儿童时期的社会经济劣势十分普遍,并且与终身罹患精神健康问题的风险增加相关 (1)。家庭收入和父母教育等社会经济因素通过多种中介机制 (2) 对健康和发展产生影响,但这些机制尚不完全清楚。儿童时期的睡眠健康状况改变可能在这些机制中发挥了作用。睡眠健康是一个多方面的概念,涵盖多个睡眠参数,例如睡眠时间、质量和时间 (3)。社会经济劣势已反复与儿童睡眠时间较短和睡眠质量较低有关 (4-9)。此外,采用实验和相关设计的研究表明,睡眠中断与精神健康问题风险增加以及情绪处理和调节改变有关 (10-13)。在神经层面,情绪处理和调节,即多种精神疾病的跨诊断因素 (14),依赖于涉及杏仁核的神经网络 (15)。在功能性磁共振成像 (fMRI) 研究中,睡眠持续时间和质量与成年人杏仁核的激活和功能连接反复相关 (16 – 19)。然而,很少有研究探讨儿童的这种关联。此前,我们提出,社会经济劣势可能导致儿童睡眠健康状况下降,这可能会改变大脑发育,从而增加患心理健康问题的风险 (20)。在本研究中,我们通过考察社会经济因素、睡眠持续时间和时间以及儿童杏仁核功能连接之间的关联来验证这些观点。
● 用连续的 n+ 层代替分段的 n++ 层 ● n+ 层中的电信号交流耦合到读出垫/条,它们之间用薄介电材料隔开。 ● 条/垫之间的电荷共享显著提高了空间分辨率并保持了时间分辨率!
https://upload.wikimedia.org/wikipedia/commons/6/62/CERN_LHC_Proton_Source.JPG https://cdn.zmescience.com/wp-content/uploads/2015/05/cern-lhc-aerial.jpg H t tp://sites.uci.edu/energyobserver/files/2012/11/lhc-aerial.jpg
当前的毒性测试几乎完全关注急性暴露,但野外的蜜蜂更有可能面临长时间的低水平暴露。此不匹配意味着当今的测试方法缺少关键细节。例如,尽管传统测试衡量死亡率,但研究发现急性和慢性暴露都是致命的,但通过完全不同的生物学机制。这对当前法规是否适合目的提出了严重的疑问。
基于闪烁体的伽马射线检测器中时间响应的增强对于诸如飞行时间正电子发射断层扫描(TOF-PET)以及实验核和粒子物理等应用至关重要。实现这一改进的一种有希望的方法是利用Cherenkov辐射,与传统闪烁光相比,它几乎瞬间发出。然而,基于Cherenkov的检测的主要局限性是可检测光子的低收率,因为大多数紫外线(UV)范围内发出,许多材料表现出很高的吸收和透明度降低。为了克服这一限制,我们建议使用红移的Cherenkov散热器(RCR)。通过将荧光掺杂剂引入液体溶剂中,Cherenkov光子从紫外线转移到可见的光谱,在紫外线上,材料更透明,常规的光电探测器具有更高的效率。这种技术旨在增加检测到的Cherenkov光子的数量,最终导致辐射探测器的时机分辨率得到改善。为了评估这种方法的可行性,我们测试了不同的液体溶剂,包括八度(ODE),氯仿(CHCL₃)和二甲基亚氧化二甲基亚氧化物(DMSO),并以Popop为波长转移掺杂剂。uv-ab-吸附分析证实,ODE在紫外线范围内表现出最高的透明度,并且在检测到的Cherenkov光子中,Popop的掺入导致了17%至56%的增加,如图1左图所示,这比较了与波长偏移的不同溶剂的相对检测率。
了解资源开发的演变,包括其时间和分配,在人生历史中是30个进化生物学中的中心研究问题。寄生虫(WASP)是研究资源 - 开发符31相互作用的模型系统,从而产生了许多关于生活历史进化的研究(Wajnberg等,2008)。par 32 Asitoid黄蜂的生活历史特别多样(Godfray,1994; Mayhew和Blackburn,1999; Jervis等,2008; Jervis和33 Ferns,2011; Quicke,2014)。例如,膜翅目术中的序列构成不少于200,000种的种类估计(Pennacchio and Strand,2006年),可能每个人都使用或多或少使用或多或少不同的宿主物种(主要是35种节肢动物)。以另一个例子为例,人体尺寸有18倍(Jervis 36等,2003),在WASP物种中,离合器大小和终生潜在的生育力超过一百多个(Jervis等人,37
1 Division of Paediatric Cardiac Plegery, Aphm La Timone, Marseille, France, 2 department of pediatrics, Division of Neurology, Timone Hospital, Marseille, France, 3 Department of Neuroradiology, Aphm La Timone, Marseille, France, 4 Cemerem, Aphm la Timone, Marseille, 5 Aix-Marseille Unit For Clinical Research and Economic Evaluation, AP - HM, Marseille, France, 6 Department of Paediatric Neurology, APHM La Timone, Marseille, France, 7 Department of Paediatric Cardiology, Aphm La Timone, Marseille, France, 8 Department of Paediatric Aneshesia and Intensive Care Unit, APHM Marseille, France, 9 Department of Neonatology, Aphm La Conception, Marseille, France, 10 Aix Marseille Univ, CNR,LPL,Aix-en-Provence,法国,11 Inserm U1106系统神经科学研究所,法国Marseille,法国
可再生能源生产对矿物的消耗远高于化石资源。某些矿物的稀缺性限制了可再生能源替代稀缺化石资源的潜力。然而,矿物可以回收利用,而化石资源则不能。我们开发了一个跨期模型来研究在矿物密集型可再生能源和化石能源存在的情况下最佳能源结构的动态。我们分析了当矿物和化石资源都稀缺但矿物可回收利用时的能源生产。我们表明,矿物的回收率越高,能源结构就越应该依赖可再生能源,对可再生能源的投资也应该越早进行。即使存在其他影响资源使用最佳计划的更为人所知的因素,我们也能证实这些结果:可再生能源部门的预期生产率增长、两种能源之间的不完全替代、矿物资源的凸开采成本以及使用化石资源造成的污染。
信息或电磁发散。自1996年第一次出版关于时机攻击的首次出版物以来,这种称为侧道攻击的新一代攻击在很大程度上引起了研究界的关注[20]。攻击的可能性很多,鉴于在敏感计算过程中设备可以披露的各种信号:功耗[19,24],磁场[11],温度[5]甚至声音[1]。 读者被转介给[15],以进行有关侧通道攻击的广泛介绍。 本文重点介绍了一个特定类别的侧通道攻击:恰当的攻击。 这些攻击是基于从CPU缓存内存泄漏的定时信息。 的确,当目标算法使用SEN-SINDIVE信息时,它将秘密数据加载到缓存内存中。 可以利用间谍保护的攻击者间接检查缓存mem-yry的内容,可以推断出目标算法已操纵哪些数据。 Tsunoo等人首先引入了缓存攻击。 在[35]中打破DES。 后来,在流行的缓存攻击中,使用缓存信息来打破AES [3],以及RSA的RSA:Flush+Reload [38]。 在本文中,我们将使用后一种攻击的改进:冲洗+冲洗攻击[14],它更隐形,产生更多的结果。 更具体地,我们在本文中研究了对ECDSA的OpenSSL实现的缓存时间攻击,ECDSA是用于数字签名的椭圆曲线算法。 OpenSSL [27]是用于实现加密协议的开源工具包。攻击的可能性很多,鉴于在敏感计算过程中设备可以披露的各种信号:功耗[19,24],磁场[11],温度[5]甚至声音[1]。读者被转介给[15],以进行有关侧通道攻击的广泛介绍。本文重点介绍了一个特定类别的侧通道攻击:恰当的攻击。这些攻击是基于从CPU缓存内存泄漏的定时信息。的确,当目标算法使用SEN-SINDIVE信息时,它将秘密数据加载到缓存内存中。可以利用间谍保护的攻击者间接检查缓存mem-yry的内容,可以推断出目标算法已操纵哪些数据。缓存攻击。在[35]中打破DES。后来,在流行的缓存攻击中,使用缓存信息来打破AES [3],以及RSA的RSA:Flush+Reload [38]。在本文中,我们将使用后一种攻击的改进:冲洗+冲洗攻击[14],它更隐形,产生更多的结果。更具体地,我们在本文中研究了对ECDSA的OpenSSL实现的缓存时间攻击,ECDSA是用于数字签名的椭圆曲线算法。OpenSSL [27]是用于实现加密协议的开源工具包。使用C实现的功能库通常用于实现安全套接字层和传输层安全协议,还用于启用OpenPGP和其他加密标准。
摘要 文化产物,例如舞蹈和音乐,具有时间特性,广义上称为节奏。当个体同步他们的动作时,出现的时间结构提供了一种团结感和共同命运,即使个体可以很容易地调入和调出这个共享的时间空间。在本章中,我们简明扼要地讨论了导致大脑节律和节律行为出现的内生性和外生性因素,以及它们的相互作用如何促成人类复杂的表达形式。自愿与外部节奏耦合和分离的能力在我们的环境(外部驱动)和我们的内部状态(内部驱动)之间产生了潜在的紧张关系,这种紧张关系可以以惊喜的形式被利用来获得艺术效益。 简介 节奏无处不在:在行星的运动中,它决定了我们白天/夜晚的节奏,在人类喜欢阅读的韵律中,在他们产生的音乐和舞蹈中。在生命的每个尺度上,从分子到鸟群,节奏标记时间并为信息流提供指标。在乔治·利盖蒂 (György Ligeti) 的《交响诗》(Poème Symphonique) (1962) 中,一百个节拍器尽可能同时启动,每个节拍器都设置为不同的节奏,标记几分钟的时间。这首交响诗可以被认为是大脑节律的理想化隐喻:数百个神经群可以同时、以相同或不同的频率、同相或异相地有节奏地活跃。大脑功能内生的多个时间指标可能用于信息的编码、分割、调节和传输。本章从广泛的神经科学角度介绍了节奏和节奏处理的心理和神经约束,将各个专业领域的细微差别留给本书的其他章节。我们首先讨论节奏在人类作品中的重要性和定义,然后转向神经振荡的作用,说明节奏在预测、注意和预期方面的具体作用——这些概念是艺术作品的核心。最后,我们强调了生物学和心理学固有的矛盾,即外生时间性与内生身体节律之间的交织,正是这些交织使得个体的生物钟具有相对性。 1 节律 在本章中,节律被定义为信号(例如声音、身体运动或神经动态)在广泛时间尺度上的周期性模式。时间模式不必严格等时才符合节律的条件;事实上,这些节律可能非常复杂,例如人类容易产生的音乐、舞蹈或语音中的层次嵌套结构。在本章中,我们的案例研究主要是准等时单流