本文介绍了一个完全实验性的混合系统,其中使用定制的高阻态忆阻器和采用 180 nm CMOS 技术制造的模拟 CMOS 神经元组装了一个 4 × 4 忆阻交叉脉冲神经网络 (SNN)。定制忆阻器使用 NMOS 选择晶体管,该晶体管位于第二个 180 nm CMOS 芯片上。一个缺点是忆阻器的工作电流在微安范围内,而模拟 CMOS 神经元可能需要的工作电流在皮安范围内。一种可能的解决方案是使用紧凑电路将忆阻器域电流缩小到模拟 CMOS 神经元域电流至少 5-6 个数量级。在这里,我们建议使用基于 MOS 阶梯的片上紧凑电流分配器电路,将电流大幅衰减 5 个数量级以上。每个神经元之前都添加了这个电路。本文介绍了使用 4 × 4 1T1R 突触交叉开关和四个突触后 CMOS 电路的 SNN 电路的正确实验操作,每个电路都有一个 5 个十进制电流衰减器和一个积分激发神经元。它还演示了使用此小型系统进行的一次性赢家通吃训练和随机二进制脉冲时间依赖可塑性学习。
经颅交流电刺激 (tACS) 是一种常用的非侵入性脑活动调节方法。具体来说,tACS 经常被用作一种有针对性的干预手段,通过增强特定频率的神经振荡来影响特定行为。然而,这些干预手段往往产生高度可变的结果。在这里,我们为这种可变性提供了一个可能的解释:tACS 与大脑的持续振荡相竞争。利用来自警觉的非人类灵长类动物的神经记录,我们发现,当神经放电独立于持续的脑振荡时,tACS 很容易同步脉冲活动,但当神经元强烈同步于持续的振荡时,tACS 通常会导致同步减少。因此,即使刺激方案是固定的,tACS 也可以对神经活动产生截然不同的结果。数学分析表明,这种竞争很可能在许多实验条件下发生。因此,试图将外部节奏强加于大脑往往会产生完全相反的效果。
摘要:高粒度定时探测器(HGTD)是ATLAS二期升级的重要组成部分,用于应对极高的堆积密度(平均每个束流团穿越的相互作用次数可达200次)。利用径迹的精确定时信息(σt~30ps),可以在“四维”空间进行径迹到顶点的关联。传感器选用低增益雪崩探测器(LGAD)技术,可提供所需的定时分辨率和良好的信噪比。日本滨松光子学株式会社(HPK)已生产出厚度为35 μm和50 μm的LGAD,中国科学技术大学也与中国科学院微电子研究所(IME)合作开发并生产了50 μm LGAD样机。为评估抗辐照性能,传感器在JSI反应堆设施中接受中子辐照,并在中国科学技术大学进行测试。在室温(20 ℃ )或−30 ℃ 下,通过I-V和C-V测量表征辐照对增益层和本体的影响。提取了击穿电压和耗尽电压,并将其表示为通量函数。受体去除模型的最终拟合得出HPK-1.2、HPK-3.2和USTC-1.1-W8的c因子分别为3.06×10 −16 cm −2、3.89×10 −16 cm −2和4.12×10 −16 cm −2,表明HPK-1.2传感器具有最耐辐照的增益层。采用一种新颖的分析方法进一步利用数据得到c因子与初始掺杂浓度之间的关系。关键词:LGAD;HGTD;定时探测器;硅探测器中图分类号:TL814文献标识码:A
经颅交流电流刺激(TAC)通常用于增强脑节律,以期改善行为性能。不幸的是,这些干预措施通常会产生高度可变的结果。在这里,我们通过在警报非人类灵长类动物中记录单个神经元来确定这种变异性的关键来源。我们发现,TACS似乎与大脑的内源性振荡竞争以控制尖峰时序,而不是增强节奏活动。具体而言,当刺激的强度相对于内源性振荡较弱时,TACS实际上会降低尖峰的节奏性。但是,当刺激相对较强时,TACS对尖峰活动施加了自身的节奏。因此,TAC的作用明确地取决于神经夹带的强度,内源性振荡在行为状态和大脑区域之间差异很大。未经仔细考虑这些因素,试图将外部节奏施加到特定的大脑区域,通常可能与预期效应相反。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2021年6月16日。 https://doi.org/10.1101/2021.04.26.441431 doi:biorxiv preprint
1. 我们首先找到被媒体偏见/事实核查 (MBFC) 标记为可靠和不可靠的来源 2. 从这些来源中找到特定主题的文章(气候变化和疫苗接种;COVID) 3. 选定经过第三方新闻机构事实核查的文章,例如 Snopes、PolitiFact、FactCheck.org、华盛顿邮报事实核查或美联社事实核查
摘要:光子探测器获得精确的时序信息的潜力在许多领域,PET和CT扫描仪中在医学成像和粒子物理探测器等等等中的重要性越来越重要。的目标是增加pet扫描仪的敏感性,并通过对每个事件的真实空间点以及未来粒子加速器设定的限制来进一步飞跃,需要进一步飞跃基于闪烁器的电离仪,最终将picoseConds Restolution延伸到几个picoseconds submevs submev subs Mev subs subs subme sev subme subs submev subme sups subme sev subs subs subs subs subsove suble of pet扫描仪的敏感性。尽管几个制造商在过去十年中取得了令人印象深刻的进展,但SIPMS的单个光子时间分辨率(SPTR)仍在70-120 PS FWHM范围内,而10 ps的值则是10 ps或更少的值。这样的步骤需要与传统方法和新技术的发展进行中断。将纳米素化学的非凡潜力与现代微电子学和3D电子整合所采用的新方法相结合的可能性为开发新一代基于过度的sipms的新观点和空前的光相位效率和计时分辨率开发了新一代的观点。
用于居民区建筑部门深脱碳化的抽象当前策略引起了以下三个作用支柱:(1)从根本上提高了最终用电消耗的效率,(2)转移到100%可再生电网的发电,(3)(3)积极地移动以使所有降低化石燃料燃油式End-Ess-Ess-Ess-Ess-Use。 由于先前无法使用高时间分辨率天然气消耗数据,因此对该政策议程的追求很大程度上发生在不完全了解家庭天然气使用强度的小时变化的情况下。 一旦实现电气化,这些变化就会对电力系统产生重要的下游影响。 本研究提供了一系列分析,这些分析基于一个新型的小时间隔自然消耗数据数据集,该数据集获得了(n = 17,072)家庭,位于南加州天然气公司服务领域的低收入部分中。 结果表明,每小时天然气的昼夜模式在很大程度上与每日峰值电力负载的时间相吻合。 这些发现表明,住宅最终用具的积极电气化有可能加剧每日高峰电力需求,增加家庭能源的总支出,并且在没有完全脱碳的电网的情况下,可能只会导致有限的温室气体排放量减轻。用于居民区建筑部门深脱碳化的抽象当前策略引起了以下三个作用支柱:(1)从根本上提高了最终用电消耗的效率,(2)转移到100%可再生电网的发电,(3)(3)积极地移动以使所有降低化石燃料燃油式End-Ess-Ess-Ess-Ess-Use。由于先前无法使用高时间分辨率天然气消耗数据,因此对该政策议程的追求很大程度上发生在不完全了解家庭天然气使用强度的小时变化的情况下。一旦实现电气化,这些变化就会对电力系统产生重要的下游影响。本研究提供了一系列分析,这些分析基于一个新型的小时间隔自然消耗数据数据集,该数据集获得了(n = 17,072)家庭,位于南加州天然气公司服务领域的低收入部分中。结果表明,每小时天然气的昼夜模式在很大程度上与每日峰值电力负载的时间相吻合。这些发现表明,住宅最终用具的积极电气化有可能加剧每日高峰电力需求,增加家庭能源的总支出,并且在没有完全脱碳的电网的情况下,可能只会导致有限的温室气体排放量减轻。
自 1978 年推出以来,美国全球定位系统 (GPS) 对军事能力产生了革命性影响。它使战场上的精确导航和机动成为可能,使精确制导武器得以发展,并提供了前所未有的协调和同步分布式部队的能力。对全球导航卫星系统 (GNSS) 的这种依赖已经延伸到民用和商业领域。
执行摘要 本文件解释了国家计时中心 (NTC) 计划的首选方案将如何帮助英国特定行业公司的发展,这些公司的创新活动由该中心支持。根据 NPL 的首选方案,该中心将提供专业设施来测试新产品的性能,并通过合作研发项目和培训服务建立专业知识。(本文件仅考虑首选方案,不审查商业案例大纲中给出的专家主导的方案分析。)NPL 长期以来一直在评估其计划的经济效应,表明公司的就业增长与过去使用 NPL 产品和服务之间存在密切联系。该证据已用于填充模型中的参数,该模型将 BEIS 的公共资金与获得 NPL 支持的公司之间的就业增长联系起来。简而言之,本文中的分析通过将新中心的资源配置视为 NPL 从 BEIS 获得的资金增加来估计 NTC 对客户和合作者的预期影响。此外,本文中的分析并未考虑建立 NTC 的成本;但也没有考虑防止(或减轻)依赖 GNSS 信号进行计时和同步的基础设施中断的潜在好处。相反,它考虑了首选方案所带来的创新活动的额外成本和好处。也就是说,分析的进行方式就好像 NTC 已经建成一样,因此在 GNSS 中断的情况下提供了一些支持,因此现在要问的问题是“政府是否应该提供额外资金(例如在 NPL 上的资源支出和对公司的补助金),以便 NTC 能够支持新计时和同步解决方案的开发和商业化?”基于这种方法,分析发现预期总收益为 8300 万英镑,一旦在十年评估期内扣除投资成本,净现值为 5700 万英镑。第一部分是本文的动机,并概述了分析。第 2 至 4 节提供市场分析、一些技术预测,并解释 NTC 将如何通过支持创新创造价值。第 5 至 10 节设置模型并引导读者完成分析。最后,还有一系列附件,讨论收益机制和计量经济学分析的更多细节。