结果:基于临床数据的模型包含年龄,性别和IL-6,而RandomForest算法则达到了最佳学习模型。确定了CT图像的两个关键放射线特征,然后用于建立放射线模型,发现Logistic算法的模型是最佳的。多模型模型包含年龄,IL-6和2个放射线特征,最佳模型来自LightGBM算法。与最佳的临床或放射线学模型相比,最佳的多模型模型具有最高的AUC值,准确性,灵敏度和负预测值,并且在外部测试数据集中还验证了其“优惠性能”(准确性= 0.745,敏感性= 0.900)。此外,多模型模型的性能优于放射科医生,NGS检测和现有机器学习模型的性能,其精度分别为26%,4和6%。
摘要背景:人们尚未找到最佳方法来自动捕获、分析、组织和合并结构和功能性脑磁共振成像(MRI)数据,以最终提取相关信号,协助缺氧昏迷患者床边的医疗决策过程。我们的目标是开发和验证一种深度学习模型,以利用多模态3D MRI全脑时间序列对缺氧缺血性昏迷相关的脑损伤进行早期评估。方法:这项概念验证、前瞻性、队列研究于 2018 年 3 月至 2020 年 5 月期间在大学医院(法国图卢兹)附属的重症监护室进行。所有患者在心脏骤停后至少 2 天(4±2 天)处于昏迷状态时接受扫描。在同一时期,我们招募并纳入年龄匹配的健康志愿者。脑 MRI 量化包括来自感兴趣区域(楔前神经和后扣带皮层)的“功能数据”和全脑功能连接分析以及“结构数据”(灰质体积、T1 加权、各向异性分数和平均扩散率)。专门设计的 3D 卷积神经元网络 (CNN) 通过使用原始 MRI 指标作为输入来区分意识状态(昏迷与对照)。基于卷积滤波器研究的体素可视化方法被用于支持 CNN 结果。法国图卢兹大学教学医院伦理委员会 (2018-A31) 批准了这项研究,并获得了所有参与者的知情同意。结果:最终队列包括 29 名缺氧后昏迷患者和 34 名健康志愿者。通过结合不同的 MR 指标使用 3D CNN 成功将昏迷患者与对照区分开来。功能性 MRI 数据(尤其是后扣带皮层的静息态功能性 MRI)的准确率最高,经过 10 次重复的十倍交叉验证,测试集的准确率为 0.96(范围为 0.94-0.98)。通过多数投票策略,可以实现更令人满意的表现,这可以弥补
AI的最新进展彻底改变了材料科学和加速材料发现的财产预测。图形神经网络(GNN)由于能够表示晶体结构作为图形,有效捕获局部相互作用并提供出色的预测,因此脱颖而出。但是,这些方法通常会丢失关键的全局信息,例如晶体系统和重复单位连接。为了解决这个问题,我们提出了Cast,这是一个基于跨注意的多模式融合模型,该模型集成了图形和文本模式以保留基本的材料信息。cast使用交叉注意机制将节点 - 和令牌级的特征结合在一起,超过了依赖于材料级嵌入(如图形平均值或[Cls]令牌)的先前方法。掩盖的节点预测预处理策略进一步增强了原子级信息的整合。与Crysmmnet和MultiMAT等方法相比,我们的四个晶体特性(包括带隙)的性质预测的实现最大提高了22.9%。预处理是对齐节点和文本嵌入的关键,并且注意力图证实了其在捕获节点和令牌之间关系的有效性。这项研究强调了材料科学中多模式学习的潜力,为更强大的预测模型铺平了道路,这些模型纳入了本地和全球信息。
© 2021 Elsevier。根据知识共享署名-非商业-禁止演绎 4.0 国际许可协议获得许可,允许在任何媒体中进行无限制、非商业性的使用、分发和复制,前提是对作品进行适当引用。
美国加利福尼亚州斯坦福大学斯坦福大学生物医学数据科学系。丹麦哥本哈根Rigshospitalet 6数据科学,生物维度,巴黎,法国7临床医学系,哥本哈根大学,哥本哈根大学,丹麦8号哥本哈根大学,贝丝·伊斯雷尔·迪克森斯医学院神经病学系,哈佛大学医学中心,马萨诸塞州波士顿,美国马萨诸塞州,美国马萨诸塞州,美国 * jamesz@stanford.edu
摘要 — 脑机接口依赖于看似简单但实际执行起来却很复杂的认知任务。在这种情况下,提供引人入胜的反馈和主体的体现是整个系统性能的关键之一。然而,事实证明,单靠非侵入性大脑活动通常不足以精确控制机械臂等复杂外部设备的所有自由度。在这里,我们开发了一种混合 BCI,它还集成了眼动追踪技术,以提高主体的整体代理感。虽然之前已经探索过这种解决方案,但如何结合凝视和大脑活动以获得有效结果的最佳策略研究甚少。为了解决这一差距,我们探索了两种不同的策略,其中执行运动想象的时间会发生变化;一种策略可能比另一种策略更不直观,这会导致性能差异。
1韩国基因组学中心(KOGIC),ULSAN国家科学技术研究所(UNIST),ULSAN,韩国共和国2韩国4大韩民国Gyongi-do,Cha Bundang医学中心的韩国4眼科系5 Spidercore Inc.大韩民国首尔大学医学院,北司尔大学医学院视觉研究研究所9内分泌学和代谢部,Yessonsi大学医学院内科学系,大韩民国首尔10号ICT SAIFEDS,CHUNG-ANG COMELY SECORT,CHUNG-ANG RESEAL,SEOL SEEL,KEEA SEROPAL,KEEL IAEC MEDICAN SERVICE,SEORITIAD,SEOUNTE,SEOUNTE,SEOUNTE,SEOUTE,CHECAINT of SEORITY,SEORISE of KERIASIT of SEORITY,CHERIASIT大韩民国Gyeonggi-do 13医疗保健大数据中心,Cha Bundang Medical Center,Gyonggi-Do,大韩民国14 Daechi Yonsese Eye Clinic,韩国首尔 *这些作者同样贡献了
定量分析人类行为对于客观描述神经系统表型、早期发现神经退行性疾病以及开发更敏感的疾病进展测量方法以支持临床试验和将新疗法转化为临床实践至关重要。复杂的计算建模可以支持这些目标,但需要大量信息丰富的数据集。这项工作引入了 Neurobooth,这是一个可定制的平台,用于时间同步的多模态人类行为捕获。在两年的时间里,集成到临床环境中的 Neurobooth 实施促进了从 470 名个人(82 名对照者和 388 名患有神经系统疾病的人)的多个行为领域收集数据,这些个人参加了总共 782 次会议。多模态时间序列数据的可视化表明,在一系列疾病中都存在丰富的表型体征。这些数据和开源平台为增进我们对神经系统疾病的理解和促进治疗方法的发展提供了潜力,并且可能是研究人类行为的相关领域的宝贵资源。
©作者2025。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by-nc-nd/4。0/。
摘要。依赖一种具有单一交互模式的技术可能会使一些用户受益,但如果他们不愿意使用该模式,肯定会排除更多用户。解决方案就是在交互系统的初始设计中包含多种模式,使其更能适应更多用户的需求。包括多种模式可以迅速增加需要接收用户命令流的交互对象的数量。如果用户需要在家庭自动化环境中与多个工件交互,则尤其如此。在本文中,我们介绍了正在进行的多模式家庭自动化系统项目的总体架构。该系统依赖于一个名为 Firebase 的基于 Web 的数据库来交换用户输入并向多个工件发出命令。用户输入是使用智能手机和配备网络摄像头的计算机获取的。它们捕捉用户的触觉输入、语音短语、眼神注视以及头部姿势特征,如倾斜和面部方向。我们能够在数据库和不同的输入采集接口之间实现可靠的数据传输。作为系统原型设计的第一步,我们能够控制使用 Unity3D 软件开发的两个独立游戏界面。