摘要 表皮生长因子 (EGF) 可诱导非肿瘤大鼠肾成纤维细胞在细胞培养中发生转化表型,这些转化表型是从成年小鼠的许多非肿瘤组织(包括颌下腺、肾脏、肝脏、肌肉、心脏和大脑)中分离出来的。它们与之前描述的从肿瘤细胞中分离出来的转化生长因子 (TGF) 类似,具体如下:它们可通过酸/乙醇提取,并且是酸稳定的低分子量 (6000-10,000) 多肽,需要二硫键才能起作用,并且它们会导致非肿瘤指示细胞的锚定非依赖性生长,而这些细胞在没有它们的情况下不会在软琼脂中生长。从雄性小鼠的颌下腺中对这些 TGF 进行部分纯化,结果表明它们不同于 EGF。与之前描述的细胞外 TGF 不同,但与来自肿瘤细胞的某些细胞 TGF 一样,它们通过 EGF 增强其促进锚定非依赖性生长的能力。颌下腺 TGF 蛋白的等电点接近中性。在 Bio-Gel P-30 上进行色谱分析,然后进行高压液相色谱分析,总纯化率达到 22,000 倍。在 EGF 存在下进行测定时,最纯化的蛋白质在 1 ng/ml 的软琼脂中具有诱导生长的活性。这些数据进一步证明了肿瘤形成可能是由非肿瘤生化过程的定量而非定性改变引起的。我们最近描述了 (1) 从几种肿瘤小鼠组织(包括由莫洛尼肉瘤病毒 (MSV) 转化的成纤维细胞和最初由化学致癌物诱导的可移植膀胱癌)中分离和表征一组低分子量、酸稳定性多肽(称为转化生长因子 (TGF))。这些多肽是可通过酸/乙醇提取的细胞内蛋白质。类似的细胞外转化多肽,称为肉瘤生长因子 (SGF),是由 De Larco 和 Todaro (2) 从培养的 MSV 转化小鼠成纤维细胞的条件培养基中首次分离出来的。最近报道了几种其他细胞外转化多肽,它们来源于人类 (3) 和动物 (4) 来源的肿瘤细胞。所有这些多肽在应用于培养的未转化、非肿瘤指示细胞时都会引起以下一系列变化,这些变化为 TGF 提供了一个操作性定义:(i) 单层细胞密度依赖性生长抑制的丧失;(ii) 单层细胞过度生长;(iii) 细胞形状改变,导致指示细胞呈现肿瘤表型;(iv) 获得锚定独立性,从而能够在软琼脂中生长。未转化的非肿瘤细胞不会在软琼脂中形成逐渐生长的菌落,并且培养细胞的这种不依赖锚定的生长特性与体内肿瘤的生长具有特别高的相关性(5-7)。
摘要 通过使用针对肝脏(连接蛋白 26 和 32)和心脏(连接蛋白 43)间隙连接蛋白的抗体,我们已将免疫反应性定位到成年啮齿动物脑部冷冻切片中的特定细胞类型。在少突胶质细胞和一些神经元中发现了连接蛋白 32 反应性,而对连接蛋白 26 和 43 的反应性则定位到软脑膜细胞、室管膜细胞和松果体。星形胶质细胞中也发生了对连接蛋白 43 抗体的免疫反应。此外,在胚胎和出生后脑组织成熟过程中,间隙连接蛋白的表达存在差异。连接蛋白 43 和 26 在胚胎脑部的神经上皮中占主导地位,而连接蛋白 32 几乎不存在。出生后 3 至 6 周,连接蛋白 26 在很大程度上从未成熟的脑部中消失;这一时间过程与连接蛋白 32 表达的增加相对应。连接蛋白 43 的表达在整个胚胎和出生后发育过程中保持较高水平。这些发现表明,大脑中的缝隙连接表达是多种多样的,特定细胞类型表达不同的连接蛋白;这种细胞特异性分布可能意味着这些细胞间通道在不同位置和发育阶段的功能存在差异。
居住的记忆T细胞(T RM细胞)已成为黑色素瘤和其他实体瘤抗肿瘤免疫的有趣研究主题。在抗肿瘤免疫的初始阶段,它们保持免疫平衡,并防止肿瘤细胞和原发性黑色素瘤形成的挑战。在转移性环境中,它们是免疫检查点抑制(ICI)的主要靶细胞群体,因为它们高表达抑制性检查点分子,例如PD-1,CTLA-4或LAG-3。一旦用ICI治疗黑色素瘤患者,居住在肿瘤中的T RM细胞就会重新激活并扩展。肿瘤杀死是通过分泌效应子分子(例如ifng g)来实现的。但是,还观察到脱靶效应。免疫相关的不良事件,例如影响皮肤等屏障器官的不良事件,可以通过ICI诱导的T RM细胞介导。因此,对这种记忆T细胞类型的详细理解是必须更好地指导和改善免疫疗法方案。
1 四川大学华西第二医院放射科,妇女儿童出生缺陷与相关疾病教育部重点实验室,成都,2 四川大学华西医学院,华西医院,成都,3 四川大学华西第二医院超声科,妇女儿童出生缺陷与相关疾病教育部重点实验室,成都,4 四川大学华西医院心内科,心血管病研究所心脏结构与功能实验室,心脏结构与功能四川省重点实验室,成都,5 电子科技大学医学院四川省肿瘤医院暨研究所放射科,成都,6 四川大学华西第二医院妇产科,妇女儿童出生缺陷与相关疾病教育部重点实验室,成都
人体组织工程矩阵(HTEMS)已被提议作为原位式心脏瓣膜(TEHVS)的有前途的方法。然而,人们对HTEM中的ECM组成如何在组织培养时间中发展仍然存在有限的理解。因此,我们使用(IM-MUNO)组织学,生化测定和质谱法(LC-MS/MS)进行了培养时间(2、4、6周)的纵向HTEM评估。 2)使用基因集富集分析(GSEA)分析参与ECM开发的蛋白质途径; 3)使用单轴拉伸测试评估HTEM机械表征。最后,作为概念验证,使用6周HTEM样品进行了TEHV制造,在脉冲重复器中测试。LC-MS/MS证实了在组织学和生化测定中观察到的ECM蛋白的组织培养时间依赖性增加,揭示了最丰富的胶原蛋白(Col6,Col12),蛋白聚糖(HSPG2,VCAN,VCAN)和糖蛋白(FN,TNC)。gsea在2周(mRNA代谢过程),4周(ECM生产)和6周(ECM组织和成熟度)的HTEM中鉴定出最大代表的蛋白质途径。单轴机械测试显示出在失败时的刚度和应力增加,以及组织培养时间的应变减少。htem的TEHV在肺部和主动脉压力条件下表现出有希望的体外性能,具有对称的LEA频率和无狭窄。总之,在组织培养时间内ECM蛋白丰度和成熟度增加,随之而来的是HTEM机械性征象。这些发现表明,较长的组织培养会影响组织组织,导致可能适合高压应用的HTEM。
Cow -pea(Vigna Unguiculata L.)是一种未充分利用的蔬菜豆类土著,主要在非洲种植和消费。但是,它在农业生产和消费方面的影响力在全球范围内已扩大。这种有弹性的作物以承受各种环境压力的能力而闻名,使其适合小型农民常用的边际作物生产系统。尽管cow豆具有对干旱的耐受性,但它对盐度胁迫和生物剂尤其敏感。对干旱的耐受程度在不同的品种之间有所不同,这需要进一步的研究才能开发出更多的弹性品种。不断变化的气候模式和相关的不确定性凸显了迫切需要繁殖更多弹性和生产性的牛皮品种。传统的植物育种技术产生了新的牛p,但是耕种的牛皮纸中的遗传多样性有限,为未来的传统繁殖工作带来了挑战。新的育种技术(NBT),包括基因编辑工具,单碱基对改变和DNA甲基化方法,为加速牛港改善提供了有希望的替代方法。然而,这种方法还面临着与组织培养中器官发生(OG)和体细胞胚发生(SE)成功相关的挑战。本综述研究了组织培养的挑战和进步,以提高cow豆生产力和针对非生物和生物胁迫的韧性。
创建无线磨刀机器人在人体的软组织内导航以进行医疗应用是一个挑战,因为船上推进和小规模的供电能力有限。在这里,我们提出了大约100个永久磁铁阵列的基于远程驱动的Millirobot系统,该系统使Cyly-Drical Magnity Millirobot能够通过连续渗透在软组织中导航。通过在软组织内部7 t/m的速度上创建一个强烈的磁力陷阱,即使没有主动控制,机器人也会吸引到阵列的中心。通过将阵列与运动阶段和荧光镜面X射线成像系统相结合,磁性机器人在离体猪脑中遵循具有极端弯曲的次数弯曲精度的复杂路径。该系统可以使未来的无线医疗机器人可以提供药物;进行活检,热疗和烧伤;并在身体组织中用小切口刺激神经元。
塞缪尔·W·卡瑟(Samuel W. 1、2、4、8、9、11、12, * 1胃肠病学,肝病学和营养部,波士顿儿童医院,波士顿儿童医院,美国马萨诸塞州波士顿2号,美国马萨诸塞州剑桥市MIT和哈佛大学Broad Instute哈佛医学院和马萨诸塞州理工学院,美国马萨诸塞州,美国6 ABBVIE剑桥研究中心,美国马萨诸塞州剑桥,美国7 Abbvie Genomics研究中心,北芝加哥,伊利诺伊州,美国8号计划,哈佛医学院,波士顿,波士顿,马萨诸塞州,美国马萨诸塞州902115,美国9哈佛大学,美国9哈佛大学,哈佛大学,哈佛大学,哈佛大学,哈佛大学,cambr euttry,cambr euntry,cambr euttry,cambr euntbr,cambr,cambr euntbr,cambr euttry,cambr euttry,10. *通信:jose.ordovas-montanes@childrens.harvard.edu https://doi.org/10.1016/j.immuni.2024.06.005
多发性硬化症(MS)是一种神经炎症性疾病,其特征是髓磷脂(脱髓鞘)丧失,并在一定程度上是随后的髓磷脂修复(Remereliation)。为了更好地了解降低和再生的病理机制,并监测旨在再生髓磷脂的疗法的疗效,提供髓磷脂无创可视化的技术是有必要的。磁共振(MR)成像长期以来一直处于可视化髓磷脂的努力的最前沿,但直到最近才能访问由髓磷脂脂质蛋白双层本身产生的快速衰减的共振信号。在这里,我们表明,双层的直接MR映射可从MS患者的脑组织中产生高度特异性的髓磷脂图。此外,发现双层信号行为的检查揭示了正常表现的白色和灰色物质的病理改变。这些结果表明,髓鞘双层映射技术的体内实施有望,并在基础研究,诊断,疾病监测和药物开发中进行了预期应用。