“传统上,干细胞主要是从骨髓或脐带血中收获的,都是相对难以获取的来源。在2001年,发现脂肪组织不仅包含脂肪细胞,而且还包含间充质干细胞 - 支持在组织损伤的情况下充当干细胞的细胞。这为干细胞疗法提供了更容易获得的替代方法。从那时起,这些干细胞已被研究并用于各种应用,包括神经系统疾病,骨关节炎,疼痛治疗和伤口愈合。”
真菌内生菌在热带森林动力学中起着关键作用,通过生长刺激,疾病抑制,胁迫耐受性和营养动员而影响植物的影响。这项研究研究了热带植物中内生菌社区的区域,叶片发育阶段和组织类型的影响。年轻和成熟的叶子是从47种荒谬的物种中收集的,来自23种的sapwood,哥斯达黎加的高果实和瓜纳卡斯特的旧生长森林。真菌多样性和组成是通过对ITS2 nrDNA区域的质量编码进行评估的。最识别的ASV距离门comycota。diver命令是botryosphaeriales和glomerellales sig-nifimpy促进了内生构造的贡献,而无需检测到宿主特异性群落。我们观察到了各个地区的物种丰富度的显着差异,并通过β多样性确定了明显的组成。在成熟的叶组织和幼体叶组织之间没有发现统计学上的显着变化。相比之下,叶子比Sapwood表现出更丰富,更多样化的组合。随着植物在时间和空间中经历了不同的环境,我们的结果可能会因通过个体发育而改变结构和化学性质的影响。鉴于这些真菌对农业和森林生态系统的潜在影响,持续的研究对于辨别宿主,内生物和其他生态机制在明显的定殖模式中的作用至关重要。
为了更好地了解北美和非洲山相关啮齿动物的高海拔高度(海拔3000 m)的功能形态适应,我们使用Microct扫描来获取3D图像和3D形态计量方法来计算内骨体积和颅内长度。这是对北美克里西特小鼠物种的113个低海拔和高海拔种群(两种peromyscus物种,n = 53),以及两个部落的非洲沼泽啮齿动物(五种,五个物种,n = 49)和protaomyini(四种,n = 11)。我们检验了两个不同的假设,即高海拔种群如何在高海拔种群中有所不同:昂贵的组织假设,该假设预测大脑和内部的体积将减少以降低大脑增长和维持大脑的成本;以及脑海中的假设,该假设预测,将作为直接表型效应或适应可容纳大脑肿胀并从而最大程度地减少高度疾病的病理症状的适应性。在校正了颅尺寸的一般异态变化后,我们发现在北美的peromyscus小鼠和非洲层压板(Otomys)大鼠中,高地啮齿动物的核心体积比低较低的啮齿动物较小,与昂贵的组织假设一致。在前组中,peromyscus小鼠,不仅是从高海拔和低海拔的野生捕获的小鼠中获得的,而且还从那些在普通园生实验室条件下从高度或低海拔捕获的父母中获得了颅骨。我们在这些小鼠中的结果表明,脑大小对升高的反应可能具有强大的遗传基础,这反应了相反但对脑量的较弱的影响。这些结果可能表明,选择可以在高海拔高度下减少小型哺乳动物的大脑体积,但是需要进一步的实验来评估该结论的一般性和潜在机制的性质。
瞄准性心外膜脂肪组织(EAT)是一种代谢高度活性的组织,可调节许多病理生理学。这项研究的目的是研究整个射血分数频谱中心力衰竭(HF)的饮食厚度和内皮功能之间的关联。总共有258例HF患者在整个光谱中具有射血分数[HF的射血分数降低(HFREF),n = 168,年龄60.6±11.2岁; HF具有保留的射血分数(HFPEF),n = 50,平均年龄65.1±11.9岁;包括轻度减少射血分数(HFMREF),n = 32,平均年龄65±12]的HF。用经胸膜超声心动图对饮食进行了微不足道的表现。血管功能通过视网膜弧(Fidart%)的闪光灯诱导的血管舒张评估,并在导管动脉中流动介导的扩张(FMD%)。与HFPEF患者相比,HFREF患者的饮食量较少(分别为4.2±2 vs. 5.3±2 mm,p <0.001)。有趣的是,饮食与微血管功能受损(Fidart%; r = 0.213,p = 0.012)和FMD%(r = 0.186,p = 0.022)显着相关fidart%的0.049和src = 0.178,fmd%的p = 0.043)在HFREF中,但在HFPEF中不进行。结论虽然HFREF中的饮食少于HFPEF中的饮食,但仅在HFREF EAT中就与血管功能障碍有关。EAT在HF中的不同作用及其转向功能有害的组织促进HF进展提供了与特定靶向EAT的比例,尤其是在射血分数降低的患者中。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
图像 - 基础丰度多重免疫特征:翻译就业。国际免疫肿瘤boumarker;页,D.B。; Broeckx,G。;冈萨雷斯(C.A.);伯基,c。墨菲,c。 Reis-Filho,J.S。; ly,a。; Harms,P.W。; Gupta,R.R。; Vieth,M。;血液,AI。;卡希拉(M。) Cosle,Z。;远处,P.J。van; Veranded,s。; Thasgaard,J。; Khiroya,r。 Abduljabbar,K。; Haab,G。Acosta; ACS,b。亚当斯(Adams) Almeida,J.S。; cover-cloud,i。 Azmoudeh-Ardalan,f。; Badve,s。; Baharun,N.B。; Bellolio,E.R。;祝福,诉; Blenman,K.R。; Fujimoto,L。Botiny Mendo;俄勒冈州汉堡; Chardas,A。; Cheang,M.C ..;复制,f。;库珀,洛杉矶; Coosemans,A。;站立,g。 Portela,F.L。dantes; Deman,f。; Demaria,s。; Dudgeon,S.N。; Elghazawy,M。; Fernand-Martin,c。 Fineberg,s。; Fox,S.B。; Giltnane,J.M。; Gnjatic,s。; Constance-Ericson,P.I。; Grigoriadis,A。; Halama,n。;汉娜(M.G.); Harbhajanka,A。; Hart,S.N。; Hartman,J。; Hewitt,S。; H.M。; Husain,Z。; Irshad,s。; Janssen,E.A; Cataoka,T.R。; Kawaguchi,K。; A.I. Khramsov; Kiraz,U。 Kirtani,P。;代码,L.L。; Corsica,K。; Acturk,G。; Scott,E。; E。;厨师,a。; Laenkholm,A.V。; Lang-Schwarz,c。 Larsimont,d。; J.K. Reading; Lerossau,M。; li,x。; Madabhus,A。; Maley,S.K。; Narasimhamhamurthy,V。Manur; Marks,D.K。;麦当劳E.S.; Pinard,C.J。; Rau,T.T。; Mehrotra,r。 Michels,s。; Kharidehal,d。; mirs,f。;米塔尔(Mittal)摩尔,D.A。; Mushtaq,s。; Nighat,H。; Papathomas,T。; lon-lorca,f。; Pera,R.D。; Pinto-Karden,J.C。;李子,G。; Pusztai,L。;新泽西州拉杰普特;报告,B.L。; Ribeiro,J.M。2024,第(262,3,(2024),pp。271-288)
光动力疗法,射频诱导的高温等。)。11,它们的超小型尺寸降低至100 nm,并且它们的高表面反应性可以与生物学环境产生显着的相互作用,可以评估它们调节细胞行为的能力或诸如细胞差异和繁殖等细胞方面的能力。12,13上面列出的不同细胞机制的控制既可以改善用于生物医学应用的创新纳米复合材料的制造,又可以促进对治疗方案的改进策略的使用,以恢复因创伤性疾病,退化性疾病或衰变而损害的组织功能。14迄今为止,已经研究了基于聚合物,金属和陶瓷的几种NP。因此,大多数研究使用包括诱导多能干细胞(IPSC)在内的多种干细胞进行。15 - 18,例如,用柠檬酸盐,壳聚糖或bronectin官能化的Au-NP能够增强人间质干细胞(MSC)和脂肪衍生的干细胞(ADSC)的差异化,并进入心肌细胞和Oste-Obte-Ormasts。19,20 AG-NP可以促进人尿液衍生的干细胞(USC)和MSC的增殖,而基于石墨烯的NPS则增强了
基于天然和合成聚合物的支架对于再生医学,特别是组织工程至关重要。具有生物相容性和生物降解性的合成聚合物由于免疫学关注而引起了极大的关注。可生物降解的合成聚合物与α-聚生物有关,包括polylactides和polyglycolides,可以在不同的配方中形成,例如微球,水凝胶和纳米纤维支架。这些聚合物材料已大量应用于组织工程中,以生产生物人工肝脏装置,胰腺,膀胱,关节软骨,骨骼,皮肤和心脏。然而,仍然存在主要的局限性,例如缺乏细胞粘附位点以及不适合合成聚合物应用的机械性能。因此,这种迷你审查试图在骨,心脏,软骨和皮肤组织工程的最新研究中解决这些局限性。
通过OCT4,SOX2,KLF4和MYC(OSKM)的表达进行瞬时重编程是组织再生和恢复活力的一种治疗策略,但对其代谢需求知之甚少。在这里我们表明,小鼠的OSKM重编程会导致维生素B 12的全球耗竭和蛋氨酸饥饿的分子标志。补充维生素B 12提高了小鼠和培养细胞中重编程的效率,后者表明细胞中性作用。我们表明,表观遗传标记H3K36me3可防止启动子外转录的违法启动(隐性转录),对维生素B 12级别敏感,为B 12水平(H3K36甲基化,转录延伸性,转录延伸性和有效的重新编程)提供了链接的证据。维生素B 12补充剂还可以加速溃疡性结肠炎模型中的组织修复。我们得出的结论是,维生素B 12通过其在单碳代谢和表观遗传动力学中的关键作用提高了体内重编程和组织修复的效率。
原位捕获技术在基因表达数据中添加了组织上下文,并有可能对复杂的生物系统有更深入的了解。但是,剪接变体和全长序列异质性在空间分辨率上无法通过当前转录组提出方法来表征。到此为止,我们引入了空间同源转录组学(SIT),这是一种使用长阅读测序来表征空间同工型变异和分类异质性的探索方法。我们在小鼠大脑中显示了如何使用SIT在组织不同区域中使用同工型表达和序列异质性。SIT揭示了嗅球不同外行之间PLP1基因的区域同工型切换,并且使用外部单细胞数据的使用允许提名表达每种同工型的细胞类型。此外,在脑功能(SNAP25,BIN1,GNA)中鉴定出差异同工型使用,这些基因通过原位测序独立验证。SIT还提供了第一次深入的成年小鼠脑的深入a-i RNA编辑图。数据探索可以通过在线重新源(https://www.isomics.eu)进行,其中同工型词和RNA编辑可以在分布环境中可视化。