结果:我们创建了一组脑感应 T 细胞,这些细胞被编程为局部递送针对癌症或神经炎症定制的治疗有效载荷。首先,我们使用公开的表达数据确定了一组 CNS 特异性细胞外配体,以建立潜在的大脑“ GPS ”标记。我们确定了诸如短蛋白聚糖 (BCAN) 之类的蛋白质,它们是大脑高度独特的细胞外基质的组成部分,可能被用于组织特异性识别。我们筛选了针对这些 CNS 特异性抗原的抗体,并用它们构建了 CNS 激活的合成 Notch (synNotch) 受体,这种受体经过工程改造,可以感知细胞外抗原并通过诱导转录反应做出反应。为了证明这种方法的治疗潜力,我们利用这个平台局部诱导了一组针对不同 CNS 疾病的基因编码有效载荷。诱导 CAR 表达的脑感应 T 细胞能够治疗原发性和继发性脑癌,包括胶质母细胞瘤和乳腺癌转移的小鼠模型,而不会对脑外组织进行脱靶攻击。相反,中枢神经系统诱导的免疫抑制细胞因子白细胞介素 10 (IL-10) 表达改善了实验性自身免疫性脑脊髓炎(多发性硬化症的小鼠模型)中的神经炎症。
作者:SZ Lin · 2022 · 被引用 12 次 — 摘要 顶点模型将生物组织描述为多边形的平铺。在标准顶点模型中,组织动力学源于... 之间的平衡
摘要令人兴奋的心脏,神经和骨骼肌肉组织的固有复杂性在构建人工对应物方面构成了巨大的挑战,这些对应物与它们的自然生物电气,结构和机械性能非常相似。最近的进步越来越多地揭示了生物电微环境对细胞行为,组织再生和可激发组织的治疗功效的有益影响。本综述旨在揭示电气微环境增强可激发细胞和组织的再生和功能的机制,考虑到来自电活性生物材料的内源性电线以及来自外部电子系统的外源性电刺激。我们探讨了这些电气微环境的协同作用,并结合结构和机械指导,对使用组织工程的可激发组织的再生
地址:印度古吉拉特邦西德布尔哥伦布全球大学植物学系 *通讯作者:Nirali Tank电子邮件:Tank.nirali94@gmail.com接收到:18-04-2024;接受:19-04-2024;发表:15-11-2024 doi:10.21608/ejar.2024.279271.1532具有药用特性的抽象植物是可以挽救生命的重要全球药物来源。是生物技术的选择,繁殖和保存的最重要的工具是生物技术。因为它包含多种类型的二级代谢产物,因此Butea Monosperma具有广泛的治疗能力,在制药行业中赢得了重要的位置。最小的种子生存力,种子速率的发芽低以及单芽孢杆菌的遗传异质性阻碍了其传播。长期种植这种重要植物的主要障碍是探索过多,栖息地损坏和有限的范围。丁亚单体是一种突出的药用植物,它是体外的组织培养和微型传播是完善的过程。对于这种特定的植物物种,对使用植物生长调节剂治疗的快速和可重复反应已成为遗传转化研究的关键组成部分。本章涵盖了单芽孢杆菌的遗传转化的进步和改善以及体外再生的方法。总而言之,我们为具有药用价值的重要树种提供建议和未来方向。它在药物上也非常重要(Firdaus&Mazumder,2012年)。其整个工厂都有商业和医疗价值。关键字:Butea Monosperma,微繁殖,遗传转化,保护介绍,尽管它是木质尺寸的木质树,它在整个印度,孟加拉国,尼泊尔,斯里兰卡,缅甸,泰国,泰国,泰国,柬埔寨,柬埔寨,柬埔寨,马来西亚,马来西亚和西部印度尼西亚,林地(Fabacea)(worl b. (Kirtikar&Basu,1935年)。这棵树生长到中等高度为12至15米,是直立的。是为特定目的定位的,这棵树是最美丽和最独特的树。丁亚单斯佩尔玛已成为当代医学的瑰宝,并广泛用于Unani Healing,Ayurveda和同种疗法治疗中。传统上声称其具有严格的性质,愤慨,改变,性刺激物,一种驱虫剂,抗菌和抗血性。butea Chew是从树皮中提取的深红色排放。它具有抗真菌性和抗动脉粥样硬化的品质,并且含有大量的小氯化和单宁酸(Gunakkunru等,2005)。许多植物切片已显示出具有抗微生物活性的植物化学物质,包括生物碱,氰化糖苷,酚类化合物,类黄酮,黄酮,萜类化合物,单宁和皂苷(Thirupathaiah,2007)。B.单子种子还用于治疗多种疾病,例如肿瘤,出血桩,肾结石,肠蠕虫,腹部问题和炎症(Anonymous,1988)。此外,从种子中的提取物,部分和分离的元素被鉴定为具有抗病毒(Yadava&Tiwari,2005),Anthelmintic(Prashanth et al。2001)和抗生素特性(Mehta等人。1983)。 此外,这棵树的花朵是类黄酮的出色供应商,被称为具有抗惊厥药(Kasture等,2000)和抗肝毒性(Wagner等,1986)的品质。 该树种的其他用途包括染料,树脂,木材和饲料(Reddy等人 2001)。 印度沿海高原代表B. monosperma的本地生态系统。 整个高原总共只有大约100种植物,表明人口相对较小。 根据生物多样性评估控制管理研讨会,印度安得拉邦的治疗工厂的生物多样性控制控制研讨会是, B. Monosperma是一种罕见且受到威胁的治疗植物。 目前由于植物零件的损害收集而濒临灭绝,用于柴火和药用目的,破坏其自然栖息地以及对其有限的可用性的无知(Aileni等人。 2014)。 此外,该植物由幼苗传播(Tandon等,2003),但是其生存力和发芽率很低。 许多研究人员正在使用组织培养技术来为药品B. monosperma培养这种关键植物,这是由于该工厂的可用性下降和全世界需求的不断增长。 因此,保留可能是有益的1983)。此外,这棵树的花朵是类黄酮的出色供应商,被称为具有抗惊厥药(Kasture等,2000)和抗肝毒性(Wagner等,1986)的品质。该树种的其他用途包括染料,树脂,木材和饲料(Reddy等人2001)。印度沿海高原代表B. monosperma的本地生态系统。整个高原总共只有大约100种植物,表明人口相对较小。B. Monosperma是一种罕见且受到威胁的治疗植物。目前由于植物零件的损害收集而濒临灭绝,用于柴火和药用目的,破坏其自然栖息地以及对其有限的可用性的无知(Aileni等人。2014)。此外,该植物由幼苗传播(Tandon等,2003),但是其生存力和发芽率很低。许多研究人员正在使用组织培养技术来为药品B. monosperma培养这种关键植物,这是由于该工厂的可用性下降和全世界需求的不断增长。因此,保留
组织工程的目的是在三维(3D)支架中应用生物材料以改善整个器官或受损组织。天然聚合物作为微观和纳米级的独特生物材料,在组织工程,感染伤口愈合和抗生素递送方面表现出了有希望的应用。Among these biopolymers, alginate, cellulose, and collagen have obtained significant attention in bone regeneration, cartilage repair, tissue healing, microbial-infected wound healing, and 3D scaffolds for cell therapy in different micro- and nanoformulations involving hydrogels, sponges, microspheres, microcapsules, foams, nanofibers, polymeric nanoparticles.此外,免疫原性和微生物感染在组织工程和组织植入物中具有潜在的健康风险。这项简洁的综述提供了藻酸盐,纤维素和胶原蛋白在组织工程以及抗菌微观和纳米成型中应用的最新进展和临床局限性。
最近,由于其生物相容性和生物降解性,PLA(聚乳酸)及其用于生物医学应用的衍生物已越来越引起人们的注意。乳酸作为PLA的单体是由微生物,动物和植物产生的。用于生产PLA,分别采用了两种涉及直接多浓度和乳酸和乳酸的环式聚合的主要方法。这种聚合物与其他合成和天然聚合物结合使用,在药物输送系统中表现出了有希望的结果,特别是抗癌药物载体和组织工程,例如皮肤再生,骨骼再生和支架。此外,PLA的纳米制剂为克服传统抗癌药物和散装材料的缺点开辟了新的途径。此外,这种生物塑料的环保特征使其成为从包装到一次性餐具的各种应用程序的传统塑料的理想选择。在这方面,这种迷你审查涵盖了与该热塑性聚酯在抗癌药物递送和组织工程中的新应用相关的最新进展和挑战。
1医学研究实验室,圣保罗大学医学院,圣保罗大学,SP,巴西2组织术和肺基因组学实验室,圣保罗大学医学系,圣保罗大学,SP,SP,SP,Brazil 3实验室,用于分子遗传学,Centeries for Centerime for Centerime for transolies for Centerime for intiment fornation intications forsy inticatitions contiment fornations for poll州癌症研究所,放射学和肿瘤学系,圣保罗大学,圣保罗大学,巴西SP,4病理学系,医院DasClínicas医学院,圣保罗大学,SP,SP,SP,SP,Brazil Pathology 5实验室ICAL病理学,病理学系,医院DasClínicas,医学院,圣保罗大学,圣保罗,SP,巴西SP
结果表明,与玻璃和聚-L赖氨酸涂层的玻璃相比,Cellbind®塑料可以用作优质的底物,因为它支持了更好的细胞生长和增殖。在该基材上,细胞成功形成了单层,这对于将模型应用于共培养研究至关重要。发现使用透析膜可减少模型中培养的两个不同细胞系的分化谱的差异,包括通过各种矿化测定法分析它们的有效分化的变化。PC3细胞与骨模型共培养的图像分析显示,骨组织成熟与癌细胞增殖之间存在相关性:癌细胞在更成熟的骨组织中表现出降低的增殖。需要进一步的研究来复制这些发现,并通过额外的骨骼成熟测定法和可能延长培养期,以确保模型的功能。
患者面临严重创伤,传染病或肿瘤引起的显着骨缺损时,通常需要手术骨移植才能完全愈合,这使得骨组织成为当今第二常见的移植组织(Migliorini等人,2021年)。传统的自体或同种异体骨移植经常遇到供体短缺,免疫排斥和对次级手术的需求(Dalipi等,2022)。骨组织工程(BTE)有可能通过促进快速骨再生来减轻这些问题。这是通过将官能细胞播种到生物相容性支架上的,在植入以促进骨骼再生之前,在体外培养到成熟。植入的支架为细胞提供了一个栖息地,可帮助营养供应,气体交换和废物清除。随着材料的降解,植入的骨细胞增殖,最终导致骨缺陷的修复(Ellermann等,2023; Jia等,2021)。BTE的关键在于鉴定高度生物相容性,迅速降解,无毒的脚手架材料,并且具有出色的孔隙率和表面生物活性。传统的支架材料,例如生物陶瓷,玻璃,金属和聚合物通常缺乏生物活性,导致诸如不良整合,磨损和腐蚀等问题,从而阻碍了功能性骨再生(Deng等,2023; Abbas et al。,2021;Pazarçeviren等,20221,20221)。虽然复合材料已经解决了单一材料的某些局限性,例如制造复杂性,脆性和对衰老的易感性,继续阻碍BTE的发展(Cannillo等,2021)。3D打印技术通过基于数字模型文件(Yang,2022)将粘合剂(例如金属或塑料)分层(例如粉末状金属或塑料)来构建对象。这项技术简化并加速了骨组织工程脚手架的制造,显着减少了生产时间,同时可以使用复杂的结构来创建个性化的脚手架,这极大地有益于患者损伤的修复(Anandhapadman等人,2022222222年)。尤其是3D生物打印的快速发展将其定位为生产组织工程脚手架材料的最有前途的技术之一,具有应对材料制备和推动材料科学和医学快速发展的主要挑战(Liu等人,2022年)。近年来,低温打印技术的应用进一步提高了脚手架的性能。Gao等。 (2022)证明,通过低温打印产生的层次多孔支架在生物矿化和骨再生方面具有显着优势。 尽管现有的评论文章广泛讨论了3D生物打印在骨组织工程中的应用,但大多数主要关注材料选择和过程优化,对挑战和潜在临床应用的潜在障碍有限分析。 这些评论通常会忽略3D生物打印与创新的生物材料和个性化结构设计相结合时如何应对骨组织工程中当前的挑战。 此外,本文探讨了如何创新Gao等。(2022)证明,通过低温打印产生的层次多孔支架在生物矿化和骨再生方面具有显着优势。尽管现有的评论文章广泛讨论了3D生物打印在骨组织工程中的应用,但大多数主要关注材料选择和过程优化,对挑战和潜在临床应用的潜在障碍有限分析。这些评论通常会忽略3D生物打印与创新的生物材料和个性化结构设计相结合时如何应对骨组织工程中当前的挑战。此外,本文探讨了如何创新回应,本文提供了3D生物打印的临床应用的全面摘要,分析了诸如印刷材料的可控降解性,与骨组织的机械兼容性以及植入后生物相容性的问题。
(RPMs)对实验室大鼠 Wistar 股骨间充质干细胞增殖率的影响。影响采用以下参数进行:载波频率 9.4 GHz、脉冲重复率 22、25 Hz、50–100 个脉冲、峰值功率通量密度 (pPFD) 140 W/cm 2 、1 cm 深度处 50 个脉冲的吸收能量值为 699×10 -6 J/cm 3 。通过用不同暴露模式的 RPMs 单次照射后 24 和 72 小时培养物中细胞数量的变化来评估暴露效果。根据 RPM 的脉冲重复率和脉冲数,可以观察到细胞分裂率的增加。频率为 25 Hz 且脉冲数最少(50 个脉冲)的 RPM 可最明显地刺激细胞分裂加速,并且在 72 小时后记录到最大增殖。关键词:干细胞、脂肪组织、分裂率、增殖、纳秒微波脉冲、