新加坡,2024 年 10 月 15 日下午 5 点 新加坡南洋理工大学科学家利用古老的建筑方法制造现代微粒 受到古代东亚使用“榫槽”技术建造木结构的方法的启发,新加坡南洋理工大学 (NTU Singapore) 的科学家开发了一种制造先进陶瓷微粒的新方法,这种微粒的宽度略大于人类头发的宽度。NTU 材料科学家利用这种方法制造了一种微流控芯片,可以以前所未有的复杂性和精度生产和塑造微小的陶瓷微粒。这些微粒具有各种复杂的形状和精确的尺寸,例如十齿齿轮或具有斜边的三角形,可用于微电子、航空航天、能源、医疗和机械工程等领域的广泛应用。例如,四面体形(四面)的二氧化锆 (ZrO ₂ ) 微粒可以改变太赫兹发射器和接收器的性能和功能——常用于安全、医疗诊断和制造业质量控制等成像领域。同样,八面体形(八面)的二氧化硅 (SiO ₂ ) 微粒可以增强材料的强度和韧性,而齿轮形陶瓷颗粒对于机械驱动至关重要。微加工和激光烧结等传统制造方法在分辨率和批量生产如此微小复杂形状的能力方面存在局限性。由于材料特性和微粒的微小尺寸,当前的方法难以实现锋利和不透明的微粒。相比之下,NTU 的方法通过采用简单的三步流程有效地解决了这些挑战。
2) 道德问题/负面反应 - 艺术的价值受到质疑:每个人都可以成为艺术家,那么为什么人们要为艺术付费? - 艺术家担心人工智能会取代他们。 - 剽窃问题:人工智能在未经艺术家同意的情况下使用已经存在的图像。
Arnaud Vanden Broeck 博士在理解核糖体(负责蛋白质合成的分子机器)如何在人体细胞中组装方面取得了重大进展。尽管核糖体发挥着至关重要的作用,但我们之前对真核核糖体组装的大部分理解都来自对酵母的研究。通过使用基因组编辑和低温电子显微镜 (cryo-EM) 等先进技术,Vanden Broeck 成功绘制了人体细胞中关键组装中间体的结构。他的发现揭示了人类核糖体组装中涉及的独特机制和因素,为这些关键细胞成分的形成方式提供了一个新模型。这项工作填补了我们知识领域的长期空白,并为治疗与核糖体功能障碍相关的癌症和疾病奠定了基础。
1 Liu,W.,Xie,S.-P.,Liu,Z。 &Zhu,J. 忽略了在温暖气候下倒塌的大西洋子午倾斜循环的可能性。 科学进步,7(2017)。 https://doi.org:10.1126/sciadv.1601666 2 Armstrong McKay,D。I.等。 超过1.5度C的全球变暖可能会触发多个气候转化点。 Science 377,EABN7950(2022)。 https://doi.org:10.1126/science.abn7950 3 Lenton,T。M.等。 全球临界点报告2023。 479(埃克塞特大学,埃克塞特,英国,2023年)。 4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。1 Liu,W.,Xie,S.-P.,Liu,Z。&Zhu,J.忽略了在温暖气候下倒塌的大西洋子午倾斜循环的可能性。科学进步,7(2017)。https://doi.org:10.1126/sciadv.1601666 2 Armstrong McKay,D。I.等。 超过1.5度C的全球变暖可能会触发多个气候转化点。 Science 377,EABN7950(2022)。 https://doi.org:10.1126/science.abn7950 3 Lenton,T。M.等。 全球临界点报告2023。 479(埃克塞特大学,埃克塞特,英国,2023年)。 4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。https://doi.org:10.1126/sciadv.1601666 2 Armstrong McKay,D。I.等。超过1.5度C的全球变暖可能会触发多个气候转化点。Science 377,EABN7950(2022)。https://doi.org:10.1126/science.abn7950 3 Lenton,T。M.等。 全球临界点报告2023。 479(埃克塞特大学,埃克塞特,英国,2023年)。 4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。https://doi.org:10.1126/science.abn7950 3 Lenton,T。M.等。全球临界点报告2023。479(埃克塞特大学,埃克塞特,英国,2023年)。 4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。479(埃克塞特大学,埃克塞特,英国,2023年)。4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。4 IPCC。气候变化2023:综合报告。工作组,II和III的贡献对政府间气候变化的第六次评估报告。184(IPCC,日内瓦,2023年)。5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。5 OECD。气候临界点:有效政策行动的见解。89(巴黎,2022年)。6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。6 Van Westen,R。M.,Kliphuis,M。A.和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。科学进步(2024)。https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。自然攀登。更改11,680-688(2021)。https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。千禧一代大西洋多年变化重建建议提示的临界点的预警信号。nat Commun 13,5176(2022)。自然556,191-196(2018)。自然通讯11(2020)。Oceanogr。Oceanogr。https://doi.org:10.1038/s41467-022-32704-3 9 Ditlevsen,P。&Ditlevsen,S。警告即将发生的大西洋子午倾斜循环循环性质的警告(20233)。 https://doi.org:10.1038/s41467-023-39810-w 10 Caesar,L.,Rahmstorf,S.,Robinson,A. https://doi.org:10.1038/s41586-018-0006-5 11 Chemke,R.,Zanna,L。&Polvani,L。M.在北大西洋暖孔中识别人类信号。 https://doi.org:10.1038/s41467-020-15285-x 12 Benton,T。G.在农业经济中运行AMOC。 自然食品1,22-23(2020)。 https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。 (2024)。 https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:10.1038/s41467-022-32704-3 9 Ditlevsen,P。&Ditlevsen,S。警告即将发生的大西洋子午倾斜循环循环性质的警告(20233)。https://doi.org:10.1038/s41467-023-39810-w 10 Caesar,L.,Rahmstorf,S.,Robinson,A.https://doi.org:10.1038/s41586-018-0006-5 11 Chemke,R.,Zanna,L。&Polvani,L。M.在北大西洋暖孔中识别人类信号。 https://doi.org:10.1038/s41467-020-15285-x 12 Benton,T。G.在农业经济中运行AMOC。 自然食品1,22-23(2020)。 https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。 (2024)。 https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:10.1038/s41586-018-0006-5 11 Chemke,R.,Zanna,L。&Polvani,L。M.在北大西洋暖孔中识别人类信号。https://doi.org:10.1038/s41467-020-15285-x 12 Benton,T。G.在农业经济中运行AMOC。 自然食品1,22-23(2020)。 https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。 (2024)。 https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:10.1038/s41467-020-15285-x 12 Benton,T。G.在农业经济中运行AMOC。自然食品1,22-23(2020)。https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。 (2024)。 https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。(2024)。https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:/doi.org/10.5670/oceanog.2024.501
可再生能源节省的排放量会严重破坏。然而,美国化石燃料出口继续向上趋势,这表明我们的排放足迹确实正在出口。国内化石气体需求预计将在2035年在国内的IRA支持下降16%(与2022年相比),但由于LNG出口码头的扩张,因此,化石气体的产量预计将增加7%,而气体出口预计将近两倍。同样,虽然国内石油和石油需求预计将下降10%,但预计产量将增长13%,出口预计将增加23%。2 EPRA启用的进一步租赁销售和化石燃料基础设施批准只会有助于这一趋势在国外运输我们的排放量。
植物性能受到根际细菌的影响。这些细菌受根渗出液以及捕食者,尤其是生物的自上而下控制的自下而上控制。生物刺激促进植物生长的微生物,从而改善了植物的性能。然而,了解确定这种三方植物 - 细菌 - 植物相互作用中互连的机制仍然有限。我们进行了实验,研究了掠食性捕食者cercomonas lenta对根际细菌群落的影响,特别是在cercomonas lenta与关键细菌分类群之间的相互作用以及关键细菌分类中的相互作用。我们追踪了根际细菌群落组成,潜在的微生物相互作用和植物性能。我们发现cercomonas lenta接种导致植物生物量平均增加92.0%。这种作用与植物生长促进性根瘤菌(假单胞菌和鞘氨拟补组织)的增加以及细菌(Chitinophaga)的降低有关,对植物生长促进性根瘤菌产生负面影响。我们还发现了植物生长促进根瘤菌联盟内生物膜形成中合作增强的证据。cercomonas lenta通过促进其在根际中促进其合作生物膜形成,从而增强了植物生长促进性根瘤菌联盟的定殖,从而导致磷酸盐溶解化增加14.5%,从而使植物生长受益。综上所述,我们提供了机械洞察力,即掠食性捕食者cercomonas lenta如何影响植物的生长,即通过刺激植物有益的微生物并增强其互动活性,例如生物膜的形成。掠食性生物可能代表有希望的生物学剂,可以通过促进植物与其微生物组之间的相互作用来促进可持续的农业实践。
该课程将全面概述冰冻圈在无缝预测和气候系统建模中的复杂作用。冰冻圈影响天气和气候模式、海洋环流以及水文循环。它在气候反馈机制中发挥着关键作用,并在季节至十年的时间尺度上充当水和能量的储存器。将冰冻圈数据和过程纳入气候模型对于提高气候预测和预估的准确性和可靠性至关重要。
软珊瑚珊瑚礁生态系统的作用越来越受海洋温度,海洋酸性和污染的威胁。高温破坏了珊瑚与它们的共生藻类伴侣之间的关系,导致珊瑚漂白,而较低的pH却削弱了珊瑚骨骼,从而危害了它们的生存。石质珊瑚构成了珊瑚礁的结构基础,但软珊瑚(称为八焦)对于生态平衡至关重要,有助于生物多样性,栖息地供应,营养循环和礁石的韧性。
Gil:事实上,它不仅是最大的,而且可以说是最古老的。它的起源可以追溯到 1917 年,当时成立了陆军密码局。战后,它位于曼哈顿,主要由民间管理。因此,研究的初始阶段都围绕数学和密码分析研究。数学用于编码信号,然后密码分析就是解码的方法。两者都是 NSA 所做的两件大事。但就更广泛的研究组合而言,超出数学范畴的研究组合是在 NSA 于 1952 年成立仅 18 个月后出现的,当时 NSA 顾问委员会说:“嘿,你们太封闭了。你们需要一个研究机构,从事非机密工作,并且远离主校区,在开放的环境中与行业和学术界互动。”因此,1956 年,物理科学实验室在学院公园成立。所以它位于马里兰大学校园内。它有几个不同的地点,其中一个现在是星巴克。但它有几个地点,现在在校园内。这实际上是一个专门研究组织的起源。从那时起,它就与 NSA 的广泛使命保持一致。我们进行科学研究以支持该任务,但研究是针对该任务的。因此,它并不涉及所有科学领域,而是涉及非常精选的领域。关于我们为何如此庞大的研究团队,另一个需要记住的重要因素是冷战时期发生的事情