本文首先回顾了颞下颌疾病(TMD)的病因学历史。我从这篇评论中得出结论,不仅旧的机械性病因概念不正确,而且还严重缺陷了当前最流行的两个概念(生物心理社会和多因素)。因此,我们在单个TMD患者水平上真正拥有的几乎总是一种特发性情况 - 我们根本不知道或不能衡量足够的量,或者不能精确确定每个患者为什么患有TMD。此外,我们不了解最终决定一个人生病而另一个人没有的宿主阻力因素。“为什么”(病因)的问题必须与“如何”(病理生理学)的问题区分开来,无论是在语义上还是在智力上,都可以正确地讨论所有这些问题。但是,我们目前无法精确地识别TMD患者的病因并不能阻止我们对大多数患者的明智(并且经常成功)治疗。当前的许多健康状况受到医生和牙医的治疗,对他们的病因不完整或有缺陷,但是有关治疗结果的经验数据的可用性允许给予一定程度的适当护理。幸运的是,在TMD疗法领域已经进行了大量比较研究,为我们提供了选择初始疗法以及处理治疗失败的基础。本文结束了TMD和口面疼痛领域的当前基础科学研究活动。即使没有对病因的完美理解,我们仍然可以提供良好的保守护理,我们应该避免具有侵略性和不可逆转的治疗方法,尤其是当它们基于病因有缺陷的概念时。i提出,这些正在进行的对关节疾病,肌肉疼痛和慢性疼痛的分子和细胞机制的研究是该领域未来进步的最有可能的途径,因为开发了特定的对策成为更精确靶向疗法的基础。
Tyrobp TMD在膜上旋转蓝色。从T18和T25控制质粒获得的颜色背景来自偶然的细胞质结合。b)与空质粒相比,相对强度的中值,四分位数和范围值。在不同配置下对X-GAL滴的半定量分析(T18/T25 N = 99; ZIP :: T18/ZIP :: T25 N = 81; TREM2TMD :: T18/Tyrobp TMD :: T25 :: T25 N = 57)。25
国家机构间临时肌疾病研究计划该研究计划是通过MDEPINET TMJ患者LED圆桌制定的 - 一项机构间,多方利益相关者倡议。本计划中包含的研究优先级是在2018年5月11日圆桌会议上对患者和其他利益相关者群体最重要的研究,以及从四个圆桌工作组准备的简报报告中提取的研究重点。(可以在线查看整个圆桌计划的简报报告。)这些研究建议的结果将为圆桌会议上传达的患者的需求提供答案,尽管对颞下颌疾病(TMD)生物心理社会基础的科学理解提高了,并实施了精确的,精确的治疗方法,以改善TMD患者的质量质量。本计划中包含的研究优先级重点是TMD的两个方面:
颞下颌关节疾病(TMDS)与咀嚼肌密切相关,但是缺乏评估肌肉的客观和定量方法。Ideas-IQ是一种化学移位编码的磁共振成像(CSE-MRI),可以量化脂肪差异(FF)。这项研究的目的是开发一种基于MR理想的IQ方法,用于TMD患者的定量肌肉诊断。回顾性地包括了65例接受3次MRI扫描(包括CSE-MRI序列)的患者。MRI诊断和临床数据进行了审查。正常组有19例患者,TMD组有46例具有单侧椎间盘位移的患者。TMD组被细分为具有和没有紧握的那些。在CSE-MRI上,两位口服放射科医生两次测量了咬肌,内侧和外侧翼状肌肉的左右FF值,并使用了平均值。使用CSE-MRI的FF测量结果表现出极好的观察内和观察者间一致性(两者的ICC> 0.889)。在咬合体,内侧翼状和翼展中,右侧和左FF值之间没有统计学上的显着差异(p> 0.05)。在TMD组中发现了统计学上的显着差异,而没有夹紧,其中咬合肌肉在椎间盘位移侧的统计学上的FF值明显低于正常侧的FF值(3.94±1.61)(4.52±2.24)(p <0.05)。CSE-MRI可以重复量化肌肉FF值,预计将是TMD患者的客观肌肉评估的生物标志物。与其他咀嚼肌相比,咬肌有望特别有用,但需要进行研究。
二维(2D)材料已实现了现代微型化设备中有希望的应用。但是,设备操作可能导致温度升高和热应力,从而导致设备故障。要应对此类热挑战,需要充分了解热膨胀系数(TEC)。在这里,我们表征了过渡金属二甲基化金(TMD)单层的平面内TEC,并使用三底物方法证明了卓越的精度。我们的测量结果证实了2D单层TEC的物理范围,因此解决了文献中两个以上的数量级差异。此外,我们确定了组成元素的热化学电负性差异作为描述符,从而可以快速估计TECS对各种TMD单层。我们的工作提出了TMD单层热膨胀的统一方法和描述符,该方法可以作为可靠2D设备合理设计的指南。
摘要:可再生能源发电是应对能源消耗快速增长的一种有希望的解决方案。然而,可再生资源(如风能、太阳能和潮汐能)的可用性是不连续和暂时的,这对下一代大型储能装置的生产提出了新的要求。由于成本低、原材料极其丰富、安全性高和环境友好,水系可充电多价金属离子电池(AMMIB)最近引起了广泛关注。然而,一些挑战阻碍了 AMMIB 的发展,包括其电化学稳定性较窄、离子扩散动力学较差以及电极不稳定。过渡金属二硫属化物(TMD)因其独特的化学和物理性质而被广泛研究用于储能装置。层状 TMD 的宽层间距离对于离子扩散和插层来说是一种很有吸引力的特性。本综述重点介绍了 TMD 作为基于多价电荷载体(Zn 2+ 、Mg 2+ 和 Al 3+ )的水系可充电电池阴极材料的最新进展。通过本综述,重点介绍了高性能 AMMIB 的 TMD 材料的关键方面。此外,还讨论了开发改进型 TMD 的其他建议和策略,以启发新的研究方向。
此外,2D TMD 是出色的光热剂,可以将近红外光转化为热能。8,9 因此,2D TMD 作为非接触式光触发药物输送的载体和肿瘤消融的光热剂越来越受欢迎。10–12 尽管潜力巨大,但 TMD 在生物医学应用中使用的一个主要限制因素是其不溶于水,因此难以在水介质中剥离,而剥离最终会导致超薄片的形成。然而,最近很少有研究利用牛血清白蛋白、海藻酸钠以及 DNA 链作为剥离剂的可能性。13–16 最近,聚乙烯吡咯烷酮剥离的 2D 二硫化钨纳米片被用于体内热成像和治疗结肠腺癌。 17 这种剥离的超薄二维 TMD 纳米片已被纳入基于水凝胶的生物医学治疗装置中。18,19
在财务方面,我们遇到了两个问题。首先,在2020年至2022年之间,土耳其里拉(Lira)损失了其价值的一半。然后,尽管我们从土耳其里拉的当地支持(Sabanci University和土耳其数学学会(TMD))中受益,但我们付出的大多数费用尤其是欧元,尤其是在Maths Village的住宿是欧元的。出于这个原因,当我们为学校提出建议时,Sabanci University和TMD均致力于15 000 TL的财政支持,因此当地的总体支持为30 000 TL。在2020年,这约为4000欧元,而在2022年,它仅代表1820欧元。
扭曲的MoiréVander waals异质结构有望为强烈相关的材料提供强大的量子模拟平台,并实现实验室中拓扑状态等物质的难以捉摸的状态。我们证明了扭曲过渡金属二甲元基(TMD)异纳米骨的Moiré带表现出非平凡的拓扑顺序,这是由于k valleys中的价和传导带状态的趋势而形成巨大的带隙(当旋转式孔隙(SOC)时)形成巨型带隙(SOC)。在扭曲的WS 2 /MOS 2和WSE 2 /MOSE 2的特征中,我们发现与拓扑平面带相关的沉重费米子和存在强相关状态的存在,从而增强了异常的霍尔电导率(AHC)。通过频段分析,我们表明来自±K-Valleys的最高传导带非常平坦,并带有旋转/山谷Chern号。此外,我们证明了MoiréTMDHetero-Nanoribbons中的非线性异常大厅效应可用于操纵Terahertz(THZ)辐射。我们的发现建立了Vi tmd纳米容器的扭曲异质结构,作为工程拓扑山谷量子阶段和THZ非线性霍尔电导率的可调平台。