摘要:本白皮书介绍了 JKL MADDIE - $JKLM,这是一种基于 Solana 区块链构建的 AI 驱动的 meme 加密货币。这款代币的灵感来自于 Maddie(一只深受喜爱的卡斯罗犬,因遗传性心脏病去世)的遗产,致力于促进社区支持,提高人们对犬类健康的认识,并将 meme 的病毒式传播力量与尖端 AI 技术相结合。JKL MADDIE - $JKLM 旨在通过将社区驱动的乐趣与现实世界的影响相结合来纪念 Maddie。
世界变得越来越数字化。因此,中型和大型企业,政府和银行越来越取决于信息系统,并且对数据安全的担忧正在增长。用户身份验证可能对这类业务构成巨大挑战,尤其是在远程维护服务方面。
1简介变形金刚及其关键组成部分近年来一直是生成模型的成功和改进的组成部分[Vaswani等。,2023]。他们的全球掌握领域,基于输入上下文动态计算的能力以及较大的能力使它们在许多任务中有用的构建块[Khan等人。,2022]。变压器体系结构的主要缺点是它们具有序列长度的计算复杂性的二次扩展,并符合时间和内存要求。想要在2048×2048分辨率下生成稳定的扩散图像时,最大的U-NET块的注意图在半精度中的记忆成本约为69 GB,为(1 batch×8头×(256 2代币)2×2 bytes)。这超出了大多数消费者GPU的功能[Zhuang等。,2023]。专门的内核,例如用于闪烁的注意力,其速度大大提高并降低了存储成本[Dao等。,2022],由于序列长度的不可行的二次缩放而引起的挑战是持久的。在寻求计算效率的过程中,稀疏注意的概念已获得关注。类似于令牌合并(Tome)的方法[Bolya等。,2023]及其在潜在图像扩散模型中的应用[Bolya and Hoffman,2023]已减少了以高相似性凝结令牌所需的计算时间,从而保留了
状态空间模型(SSM)具有与变压器的注意模块相比保持线性计算复杂性的优势,并且已将视觉任务应用于视觉任务作为一种新型强大的视觉基础模型。受到观察的启发,即视觉变压器(VIT)的最终预测仅基于最有用的代币的子集,我们采取了新的步骤,即通过基于令牌的修剪来提高基于SSM的视力模型的效率。但是,即使经过广泛的微调,为VIT设计的现有代币修剪技术的直接应用也无法提供良好的性能。为了解决此问题,我们重新审视了SSM的独特计算特征,并发现Naive Application破坏了顺序令牌位置。这种洞察力促使我们设计了一种专门针对基于SSM的视力模型的新颖和通用的代币修剪方法。我们首先引入一种修剪感知的隐藏状态对准方法,以稳定剩余令牌以增强性能的邻里。此外,根据我们的详细分析,我们提出了一种适用于SSM模型的令牌重要性评估方法,以指导令牌修剪。采用有效的实施和实际加速方法,我们的方法带来了实际的加速。广泛的实验表明,我们的方法可以实现大量的计算减少,而对不同任务的性能的影响最小。值得注意的是,我们在成像网上获得了81.7%的精度,而修剪的plainmamba-l3的拖鞋降低了41.6%。此外,我们的工作为了解基于SSM的视力模型的行为提供了更深入的见解。
f)签署任何保证或赔偿或保证的合同,并为任何人(包括公司具有直接或任何人(一个“控股实体”)的直接或任何人的兴趣或任何人的兴趣或独立企业的责任或任何人的兴趣或独立企业的企业(包括任何人)的义务和/或任何人的义务(包括任何人的任何机构),为任何人提供任何款项的义务和/或有任何直接或独立企业的责任或任何人的利益,该公司的义务和/或有任何直接或任何人的利益,以及任何与公司在任何企业或合资企业中与公司相关联的人,有或没有公司获得任何考虑或优势(无论是直接或间接),以及无论是个人盟约还是抵押,收费,费用或留置权,对公司的所有或一部分,财产,资产,资产或未称呼的资本(现在和未来)或其他方式或其他方式或其他方式;出于本文档的目的,“保证”包括任何义务,无论如何,付款,满足,提供资金,以支付或满意,赔偿,赔偿并赔偿违约后的违约后果,或其他任何其他人的欠款或财务义务;
摘要 - 本文提出了一个基于变压器的新型框架,旨在通过生成精确的特定于类的对象定位图作为伪标签来增强弱监督的语义细分(WSSS)。在观察到标准视觉变压器中的单级令牌区域的观察基础上可以促进类不足的定位图,我们探索了变压器模型通过学习多个类代币来捕获类别歧视对象定位的特定于类别歧视对象的特定歧视对象的潜力。我们引入了一个多级令牌变压器,该变压器结合了多个类令牌,以启用与贴片令牌的类感知相互作用。为了实现这一目标,我们设计了一种班级感知的培训策略,该策略在输出类令牌和地面实际类标签之间建立了一对一的对应关系。此外,提出了一个对比类别(CCT)模块来增强判别类令牌的学习,从而使模型能够更好地捕获每个类别的独特特征和特性。结果,可以通过利用与不同类代币相关的类键入浓度来有效地生成类歧视对象定位图。为了进一步完善这些定位图,我们提出了从斑块到斑块变压器注意的斑块级成对亲和力的利用。此外,提出的框架无缝补充了类激活映射(CAM)方法,从而在Pascal VOC 2012和MS Coco 2014数据集中显着改善了WSSS性能。这些结果强调了类令牌对WSSS的重要性。代码和模型在此处公开可用。
'NetApp不提供有关本出版物中提供的任何信息或建议的准确性,可靠性或可靠性的陈述或保证,或者涉及通过使用信息或遵守此处提供的任何建议而获得的任何结果。本文档中的信息按原样分发,此信息的使用或此处的任何建议或技术的实施是客户的责任,并且取决于客户评估和集成到客户操作环境中的能力。本文档和本文包含的信息可以仅与本文档中讨论的NetApp产品有关。
pla窃在计算机科学教育中普遍存在[CJ08; MUR10],主要是由于易于复制数字作业。尽管将其理解为不当行为,但一些学生仍继续进行窃,经常试图通过重命名,重新排序或插入代码来混淆它[kar16; NJK19; sağ+22; sağ+23b; sağ+24b]。在大型强制性课程中,手动检查不切实际[CAM+17],使自动窃检测必不可少[OTT76]。诸如Moss和Jplag之类的软件探测器通常用于解决此问题,假设成功的混淆需要已经教授的技能。然而,窃的发电机,例如mossad [db20],通过在不需要专业知识的情况下自动化混淆来挑战这一假设。Mossad通过插入熵或重新排序语句以逃避检测来打破基于令牌的检测器。
扩散模型代表文本到图像生成中的新范式。除了从文本提示中生成高质量的图像之外,诸如稳定扩散之类的模型已成功扩展到了共同生成的分段伪遮罩。但是,当前的敏感主要依赖于提取与用于图像合成的及时单词相关的关注。这种方法限制了从文本提示中未包含的单词代币中得出的分割掩码的产生。在这项工作中,我们介绍了开放式摄影注意力图(OVAM) - 用于文本到图像扩散模型的无训练方法,可为任何单词生成注意力图。此外,我们提出了一个基于OVAM的轻巧优化过程,用于查找具有单个注释的对象类的准确注意图。
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。