摘要:人工智能在日常生活中的应用变得无处不在且不可避免。在那个广阔的领域,一个特殊的位置属于用于多参数优化的仿生/生物启发的算法,该算法在许多区域中找到了它们的使用。新颖的方法和进步正在以加速速度发表。因此,尽管事实上有很多调查和评论,但它们很快就变得过时了。因此,与当前的发展保持同步非常重要。在这篇综述中,我们首先考虑了生物启发的多参数优化方法的可能分类,因为专门针对该领域的论文相对较少,而且通常是矛盾的。我们通过详细描述一些更突出的方法以及最近发表的方法来进行。最后,我们考虑在两个相关的宽域中使用仿生算法的使用,即微电子(包括电路设计优化)和纳米光子学(包括诸如光子晶体,纳米质体的构造和水流的结构的逆设计(包括逆设计)。我们试图保持这项广泛的调查独立,以便不仅可以使用相关领域的学者,还可以使用对这个有吸引力领域的最新发展感兴趣的所有人。
摘要 本研究旨在评估高渗盐水与晶体液(生理盐水/乳酸林格氏液)在改善创伤性脑损伤 (TBI) 患者临床结果方面的效果。我们以不同的 MeSH 词搜索了 1990 年至今的电子数据库和灰色文献(未发表的文章)。关于 TBI(>18 岁)减压开颅术的随机对照试验、病例对照研究和前瞻性队列研究。临床结果指标包括格拉斯哥昏迷结果量表 (GCOS)、扩展 GCOS 和死亡率。数据被提取到 Review Manager 软件中。共检索并分析了 115 篇符合纳入标准的文章。最终,我们的荟萃分析纳入了五项研究,结果显示,使用高渗盐水的 TBI 患者在出院或 6 个月时获得良好结果的可能性与使用晶体液的患者相比无统计学意义(比值比 [OR]:0.01;95% 置信区间 (CI):0.03–0.05;P = 0.65)。出院或 6 个月时使用高渗盐水与使用晶体液的死亡相对风险 (RR) 为 RR:0.80;95% CI:0.64–0.99;P = 0.04。亚组分析显示,与晶体液组相比,使用高渗溶液的组干预次数显著减少 OR:0.53;95% CI:0.48–0.59; P < 0.00001,并且还缩短了重症监护病房的住院时间(OR:0.46;95% CI:0.21–1.01;P = 0.05)。高渗盐水减少了经济负担,但既不影响临床结果也不降低死亡率。然而,需要进一步的临床试验来证明高渗盐水与普通盐水/乳酸林格氏液相比,是否在改善 TBI 患者的临床和神经系统状况方面有任何作用。
组织和技术课程委员会计划举行的活动(技术会议)和共享(全体会议和社交活动)议程。2024 SBFOTON IOPC将遵循IEEE会议的典型格式,包括与同行评审的论文,全体会议和邀请的演讲一起演示的技术会议。提交必须使用IEEE A4-PAPE模板进行会议(https://www.ieee.org/conferences/publishences/publishing/templates.html)和3页限制。2024 SBFOTON IOPC网站将很快启动,并且使用EDAS平台的论文注册和上传的截止日期为2024年8月19日。接受将在9月30日进行传达,最终版本可能会上传到2024年10月21日。公认的论文将在IEEE Xplore上发表在会议上。
对政府设施和实验室的需求•持续支持Admatel和AMCEN•建立米沙ya和棉兰老岛的辐射设施,以满足该地区的行业领域的需求,需要人力资源的行业•对STEM课程,行业和消费者的启动方案的启动和培训•提高对全球范围的研究人员的跨越范围,以提高对STEM课程的启用和培训的范围•在国外培训范围的范围•需要和开放渠道的协作渠道(例如实习,沉浸式)•介绍针对光学和光子学的有针对性的培训选修选修课,以促进某些行业应用的毕业生的就业准备•BALIK Scientist计划巩固资源,领导R&D领域的领域和协作工作•改善劳动力的劳动力准备工作,以与跨性伙伴的开发和伙伴的构建和伙伴的能力•技术及以上的伙伴•技术研究•技术研究•技术研究•技术研究•技术研究,•研发应用和基础设施共同开发实体•路径中心研发项目:THZ测量半导体和航空航天设备的质量保证(2022-2024)S&T政策计划•确保对政府政策奖励和利益的交流,以使利益方面的利益和利益与利益相关者实习,沉浸式)•介绍针对光学和光子学的有针对性的培训选修选修课,以促进某些行业应用的毕业生的就业准备•BALIK Scientist计划巩固资源,领导R&D领域的领域和协作工作•改善劳动力的劳动力准备工作,以与跨性伙伴的开发和伙伴的构建和伙伴的能力•技术及以上的伙伴•技术研究•技术研究•技术研究•技术研究•技术研究,•研发应用和基础设施共同开发实体•路径中心研发项目:THZ测量半导体和航空航天设备的质量保证(2022-2024)S&T政策计划•确保对政府政策奖励和利益的交流,以使利益方面的利益和利益与利益相关者
在本文中,我们讨论了3个示例,其中微透镜可以成为解决光纤阵列和光子积分电路(PIC)之间耦合挑战的有用工具。这项工作中使用的(阵列)通过光孔反射方法实现了(可以单层集成在PIC的背面,或者可以单独地集成在PIC的后侧,或者可以在PIC的设备侧安装。第一个示例涉及在感应图片的背面蚀刻的硅微透镜(在C波段中运行),目的是用于放松的对齐公差,并使设备侧没有接口纤维。第二个示例涉及实施4毫米长的工作距离扩展的梁(30 µm模式场直径,C型波段)界面,用于电信/数据量应用程序,该应用程序也极大地放松了PIC上的GRATINAL耦合器和A纤维阵列之间的横向和纵向对齐公差。最终示例涉及在这个长的工作距离扩展的梁界面中的隔离器的集成。隔离器堆栈由偏振器(0.55 mm厚),非重生法拉第旋转器(485 µm厚的薄膜闩锁Faraday旋转器)和半波板(HWP,91 µm石英)组成。我们获得了宽带操作,表现出非常低的(1至1.5 dB之间)的插入损失和良好的灭绝比(17至20 dB之间)C波段(约1550 nm)
单电子控制的基本概念:添加单个电子之前和之后的导电岛(a)。添加单个未补偿的电子电荷会产生电场 E,这可能会阻止添加以下电子。基于单电子转移的设备:a) 单电子盒:这是一种基于单电子转移的电子设备。图 (a) 显示了概念上最简单的设备,即“单电子盒”。该设备仅由一个小岛组成,小岛与较大的电极(“电子源”)之间通过隧道屏障隔开。可以使用另一个电极(“栅极”)将外部电场施加到岛上,该电极与岛之间通过较厚的绝缘体隔开,这不允许明显的隧穿。该场改变了岛的电化学电位,从而决定了电子隧穿的条件。图 (b) 显示了特定的几何结构,其中“外部电荷” Q e = C 0 U 可以很容易地可视化,(c) 显示了“库仑阶梯”,即平均电荷 Q = -ne 对栅极电压的阶梯式依赖性,适用于几个温度值。栅极电压 U 的增加会吸引越来越多的电子进入岛。电子通过低透明度屏障的传输的离散性必然使这种增加呈阶梯状。
抽象的元编码已经提供了对微生物多样性的前所未有的见解。在许多研究中,简短的DNA序列被纳入较低的Linnaean等级,排名组(例如属)是生物多样性分析的单位。这些分析假设Linnaean等级在生物学上具有有意义的,并且排名相同的组是可比的。我们为海洋浮游硅藻使用了一个元尺寸数据集来说明这种方法的限制。我们发现,20个最丰富的海洋浮游硅藻属的年龄从4到1.34亿年不等,这表明属的不相等,因为有些人比其他属的时间更多。然而,物种丰富度在很大程度上与属年龄无关,这表明属中物种丰富度的差异通过物种和灭绝率的差异来更好地解释。分类学分类通常不会反映系统发育,因此属级分析可以包括系统发育嵌套的属,进一步的基于等级的分析。这些结果强调了系统发育在理解微生物多样性模式中必不可少的作用。
与经典电子不同,量子态以难以测量而著称。从某种意义上说,电子的自旋只能处于两种状态之一,即向上或向下。通过简单的实验可以发现电子处于哪种状态,对同一电子的进一步测量将始终证实这一答案。然而,这幅图景的简单性掩盖了电子复杂而完整的本质,电子总是处于两种状态之一,而状态会根据测量方式而变化。量子态断层扫描是一种使用许多相同粒子的集合来完全表征任何量子系统(包括电子自旋)的过程。多种类型的测量可以从不同的特征基重建量子态,就像经典断层扫描可以通过从不同的物理方向扫描三维物体来对其进行成像一样。在任何单一基础上进行额外的测量都会使该维度更加清晰。本文主要分为两部分:层析成像理论(第一部分和第二部分)和光子系统的实验层析成像
-召集人:Pathey, Luc(PSI - Paul Scherrer 研究所); Sikora, Marcin(SOLARIS 国家同步辐射中心,雅盖隆大学,Czerwone Maki 98, 30-392 Krakow, 波兰); Kordyuk, Alexander(基辅学术大学)