神奇的摇钱树:过去几年,疫情和能源支持支出高企,这让公众更有可能认为,政府可以在需要或想要时找到资金——超过一半(51%)的人表示,过去几年的情况表明,只要政府愿意,它总能找到资金,相比之下,只有三分之一多一点(35%)的人表示,过去几年的情况表明,政府能负担的支出是有限的。忠诚国民党(红墙选民)是第二大认为政府可以在需要或想要时找到资金的人。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。
对离子在半导体中产生的电离径迹的产生和传输进行 TCAD 模拟与可靠性以及辐射探测器的设计息息相关。具体而言,可靠性应用侧重于模拟在测试半导体元件是否易受软错误(逻辑器件、存储器,例如 [1] )和单粒子烧毁(功率器件,例如 [2] )影响时发生的瞬态现象。主要的 TCAD 工具已经包含模型和程序(例如 [3] ),但它们存在一些实际限制,例如仅限于单一类型的离子、有效能量范围的限制以及仅适用于硅的校准。此外,现有模型在数值上比较僵化,不易针对其他类型的离子、半导体和能量范围进行校准。本文提出了一个基于物理导向的 Crystal-Ball 函数 [4] 的半导体中低能离子沉积电荷的统一模型。特别关注能量范围分别为 0 – 10 MeV 和 0 – 160 MeV 的 α 粒子和质子。与常用模型相比,这种选择具有几个优势。特别是,α 粒子和质子使用相同的建模函数。此外,与现有解决方案相比,所提出的模型使用的校准参数更少,数值条件良好,并且其校准参数更透明,因为它们与可测量的物理量相关。最后,所提出的模型可以轻松扩展到不同的半导体和离子类型。
我们对射击噪声损坏的图像和删除噪声的镜头提出了新的视角。通过将图像形成视为光子在检测器网格上的顺序积累,我们表明,经过训练的网络可以预测下一个光子可能到达的位置,实际上可以解决最小均方形误差(MMSE)denoising任务。这种新观点使我们能够做出三个贡献:i。我们提出了一种新的策略,用于自我监督的denoisis,ii。我们提出了一种通过迭代采样并将少量光子添加到图像中的溶液后部采样的新方法。iii。我们通过从空画布启动此过程来得出一个完整的生成模型。我们称这种方法的生成积累(GAP)。我们在4个新的荧光显微镜数据集上进行定量和定性评估我们的方法,该数据将可供社区提供。我们发现它的表现优于其基准或在PAR上执行。
摘要:由于生命质量和患者的流动性降低,尤其是患有手部残疾的人,残疾是一个全球问题。本文在过去十年中对主动手部外骨骼技术进行了审查,以供康复,援助,增强和触觉设备。手外骨骼仍然是一个积极的研究领域。每个手外骨骼都有一定的要求,可以实现其目标。这些要求已被提取并分为两个部分:一般和特定的部分,为开发未来设备提供了一个共同的平台。由于这仍然是一个发展中的领域,因此根据领域的进步也会形成要求。技术挑战,例如尺寸要求,重量,人体工程学,康复,执行器和传感器,都是由于手工的复杂解剖结构和生物力学所致。手是人体中最复杂的结构之一。因此,为了了解某些设计方法,本文解决了手的解剖学和生物力学。由于实施智能系统和新的康复技术,这些设备的控制也是一个挑战。这包括意图检测技术(脑电图(EEG),肌电图(EMG),入学)和估计应用辅助。因此,本文以系统的方法总结了该技术,并回顾了主动手部外骨骼的艺术状态,重点是康复和辅助设备。
图3。在涉及数百万个量子点的10.5 k的耦合和未耦合激子的两级“宏观”量子状态的Rabi振荡。此类Rabi振荡较早仅报道了仅具有一个单个量子点的结构[3]。使用光电容测量的观察到的Rabi振荡实际上表明即使在我们的稳态光电容测量中探测的温度和时间尺度上,即使在这种温度和时间尺度上也“无关”。信用:今日材料电子产品(2023)。doi:10.1016/j.mtelec.2023.100039
摘要:对光与物质之间强耦合的研究是研究的重要领域。它的重点不仅源于出现众多引人入胜的化学和物理现象,而且通常是新颖和意外的,而且还源于其为新颖的化学,电子,电子和光子设备设计核心组件设计的重要工具集,例如量子,量子量,量子,量子,激光,放大器,模块化器,传感器,传感器,以及更多。已经证明了各种配置系统和光谱制度的强耦合,每个耦合均具有独特的功能和应用。从这个角度来看,我们将重点关注该研究领域的一个子区域,并讨论超材料和光子频率下的强烈耦合。超材料本身就是电磁谐振器,作为“人工原子”。我们概述了最新进步的概述,并概述了这一跨学科科学的重要和有影响力的领域中可能的研究指示。
不连贯的激光脉冲的自我形成似乎是自相矛盾的,既涉及强大的不稳定性和时间定位过程。不一致的脉冲状态在超快激光动力学中均经常出现。在本文中,我们通过实时录制不同的腔体分散液体下的不一致的脉冲动力学来带来决定性的实验数据。我们的测量值强调了发挥作用的不同主导机制。虽然孤子脉冲塑形有助于在异常分散体中创建一堆混乱的脉冲,而正常分散体状态下的不一致的脉冲遵循强烈的湍流耗散动力学。数值模拟在定性上很好地重现了观察到的动力学的最终堆积阶段。通过显示共同的动力学特征和差异,这些结果支持了不一致的耗散孤子的一般概念的发展。
摘要:单壁碳纳米管 (SWCNT) 的光物理因其在光收集和光电子学中的潜在应用而受到深入研究。SWCNT 的激发态形成强结合的电子-空穴对,激子,其中只有单重态激子参与应用相关的光学跃迁。长寿命的自旋三重态阻碍了应用,但它们成为量子信息存储的候选者。因此,非常需要了解三重态激子的能量结构,特别是 SWCNT 手性依赖的方式。我们使用专用光谱仪报告了对几种 SWCNT 手性的三重态复合发光(即磷光)的观察结果。这得出了单重态-三重态间隙与 SWCNT 直径的关系,并遵循基于量子约束效应的预测。在高微波功率(高达 10 W)辐射下的饱和度可以确定三重态的自旋弛豫时间。我们的研究敏感地区分了最低光学活性状态是从同一纳米管上的激发态填充的,还是通过来自相邻纳米管的福斯特激子能量转移填充的。关键词:碳纳米管、光学检测磁共振、弛豫时间、量子约束、分子标尺、福斯特激子转移 U
1华沙大学物理学院实验物理研究所,华沙02-093波兰2物理系,罗马萨皮恩扎大学,罗马00185,意大利罗马3劳动力国家国家 /地区champs crampscrampsmagnétiqus登山 Nanotechnologies, National Research Council (CNR-IFN), 00133 Rome, Italy 5 Central European Institute of Technology, Brno University of Technology, Brno 61200, Czech Republic 6 Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan 7 International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044,日本8 Centera实验室,高压物理研究所,波兰科学院,波兰华沙01-142 ∗作者,应与之解决任何信件。