识别导致神经遗传疾病的 DNA 变异的主要瓶颈是 VUS 的功能分析。本研究的目的是通过在 NPC 和斑马鱼中使用 CRISPR/Cas9 基因组编辑来开发一种方法,以对在巨脑回患者中观察到的候选致病变异进行建模。通过 aCGH 和 WES 分析了 20 名巨脑回/无脑回患者的 DNA,并确定了变异的优先级。通过使用 CRISPR/Cas9 基因组编辑在 NPC 和斑马鱼中生成突变系,并与已知在巨脑回/无脑回中发挥作用的三个关键基因(TUBG1、LIS1、DAB1)之一的模型进行了比较。使用 3D 基质胶腔系统 (ICChip) 对 NPC 进行表征,并在 3 dpf 和 5 dpf 时观察到发育中的斑马鱼的表型变化。使用 qPCR 对目标突变系和选定的变体系进行了比较。与对照组相比,在 3 个选定基因的突变 NPC 系中观察到迁移延迟。WES 确定了两个候选变体,CGREF1 和 NOL9。观察到 CGREF1KO 斑马鱼和 CGREF1KONPC 中无脑畸形和小头畸形相关基因和神经元分化基因的表达变化。在 Tubg1 突变斑马鱼中观察到严重的表型,包括小头和小眼,以及肝脏/肠道发育异常。我们的研究结果证明,使用 NPC 和斑马鱼模型可以以省时省钱的方式测试导致与 NPC 迁移相关的缺陷的变异。多组学分析可以进一步将这种方法的使用范围扩展到其他神经遗传缺陷组。该项目由 TUBITAKCOST Action 资助,代码号为 217S944。
十五年的Elasmobranchs贸易由DNA工具公开:增强监测和保护措施的教训Marcela Alvarenga 1,2,3,4,Ingrid Vasconcellos Bunholi 5,Gustavo Reis de Brito 6,Marcos 6,Marcos十五年的Elasmobranchs贸易由DNA工具公开:增强监测和保护措施的教训Marcela Alvarenga 1,2,3,4,Ingrid Vasconcellos Bunholi 5,Gustavo Reis de Brito 6,Marcos 6,Marcos
不断增长的人口和不断变化的环境引起了全球粮食安全的重大关注,目前几种重要农作物的改善率不足以满足未来需求1。这种缓慢的改善率部分归因于作物植物的长代时代。在这里,我们提出了一种称为“速度育种”的方法,该方法大大缩短了生成时间并加速了繁殖和研究计划。速度繁殖可用于春季麦(Triticum aestivum),硬脂小麦(T. durum),大麦(大麦(Hordeum vulgare)),鹰嘴豆(Cicer arietinum)和Pea(Pisum sativum)和4代Canola(brassica napus),代替2-3的情况下,可用于实现多达6代的春季。 我们证明,完全封闭的,可控的环境生长室中的速度繁殖可以加速植物的发展,包括成人植物特征的表型,突变研究和转化。 在温室环境中使用补充照明可以快速生成单个种子下降(SSD),并可能适应大规模的农作物改进计划。 通过发光二极管(LED)补充照明节省成本。 我们设想将速度育种与其他现代作物育种技术相结合的巨大潜力,包括高通量基因分型,基因组编辑和基因组选择,从而加速了作物的改善速度。可用于实现多达6代的春季。我们证明,完全封闭的,可控的环境生长室中的速度繁殖可以加速植物的发展,包括成人植物特征的表型,突变研究和转化。在温室环境中使用补充照明可以快速生成单个种子下降(SSD),并可能适应大规模的农作物改进计划。通过发光二极管(LED)补充照明节省成本。我们设想将速度育种与其他现代作物育种技术相结合的巨大潜力,包括高通量基因分型,基因组编辑和基因组选择,从而加速了作物的改善速度。
ISEEK,一种用于高速、并发、分布式取证数据采集的工具。论文发表于 Valli, C. (Ed.)。第 15 届澳大利亚数字... 会议论文集
纤维板层癌 (FLC) 是一种罕见但致命的癌症,主要发生在年轻人中。目前尚无已知的有效治疗方法,尽管似乎有几种有希望的治疗方法正在开发中。遗传学研究证实,几乎所有 FLC 肿瘤都具有由融合基因 (DNAJB1-PRKACA) 编码的融合蛋白标记 (DNAJB1- PRKACA);它目前被接受为 FLC 的诊断标准。几个研究小组已经建立了患者来源的异种移植 (PDX) FLC 模型,使用免疫功能低下的动物作为宿主,并使用患者组织样本(肿瘤或腹水)作为 PDX 衍生类器官的主要来源。这些 FLC 类器官由 FLC 上皮、内皮祖细胞和星状细胞组成。CRISPR/Cas9 被用作基因编辑技术来修改成熟肝细胞以获得表达融合基因和/或与 FLC 相关的其他突变基因的离体 FLC 样细胞。尽管这些模型模拟了部分但不是全部 FLC 特征,但使用这些模型进行药物筛选在确定临床上有用的治疗方法方面已被证明无效。将 FLC 与正常成熟的内胚层细胞谱系进行比较的遗传研究表明,FLC 并非与肝细胞共享遗传特征,而是与胆管树干细胞 (BTSC) 亚群共享遗传特征,这些肝/胰腺干细胞/祖细胞始终存在于胆管树中的胆管周围腺体 (PBG) 中,是肝脏和胰腺形成和出生后再生的干细胞来源。因此,预计 BTSC 模型(而不是肝细胞模型)可能更有用。在这篇综述中,我们总结了各种 FLC 模型的现状及其特点、应用和局限性。它们提供了了解这种致命疾病的原因和特征的机会,并且可以从中确定有效的治疗方法。
谁可以参加 培训计划每批最多可容纳 25 名参与者。 第二年及以上的博士生将被优先考虑。 需要具备 Crispr 以及植物分子生物学的基本知识。 与基因组编辑 EFC 项目相关的科学家、博士后和研究学者将优先考虑。 2025 年 2 月 3 日至 7 日 – 博士后研究员和早期职业科学家。(https://forms.gle/wMJEeaJzhwYviARp7) 2025 年 2 月 10 日至 14 日——博士生(第 2 年及以上)和研究学者(具有至少 6 个月的经验)。(https://forms.gle/RMmeh2VYRTAhiEKx7) 旅行和住宿 参与者必须承担自己的旅行、住宿和伙食费用。从住宿地点到培训地点的当地旅行安排由参与者自行安排。主办方将承担培训期间的工作午餐。
真核生物的基因组主要由散布的重复序列的各种家族组成,包括逆转录座子和可转移和内源性病毒元素。普遍的观点是,基因组重复体的多样家庭应被视为寄生虫或“垃圾DNA”(Bourque等,2018)。但是,可以遵循族谱树,或这些元素进化发展和分布的途径,因此,我们的理解应得到完全修订。重复元素在系统生物学和医学意义上扮演着角色,远远超出了“垃圾DNA”和病毒化石(Wells and Feschotte,2020年)。最近的研究越来越多地表明,基因组的基本成分,即使不是我们基因组的最基本成分,它具有病毒源,并且作为移动遗传介体的病毒在遗传进化中始终起着至关重要的作用(Cosby等,2019)。基因组的演变与克服和固定综合事件有关。随着每个重要的进化步骤,基因组中的移动遗传因素数量急剧增加。自从生活开始以来,就没有一个生物体没有所有这些不同的移动元素。在基因组的形成中,我们可以追踪涉及无数不同外观的移动元素的许多过程。基因组不是无数意外突变及其选择的最终产物,而是一种原始外部病毒感染的生活沉积物,这种矿床经常被回收,并且像编年史一样,重新解释(Vassilieff等,2023年)。为了完全发展,移动元素必须与他们的宿主基因组建立共同的关系(Gebrie,2023)。移动元件和宿主基因组的进化系统发育树显示强相关性(Kalendar等,2004; Kalendar等,2008; Moisy等,2014; Kalendar等,2020)。内源性逆转录病毒,也属于逆转录病毒,是单链
抽象动机:在生物信息学的计算机实验中,涉及计算工具和信息回购的协调使用。以Web服务的形式提供了越来越多的这些资源,并提供了程序化访问。生物信息学科学家将需要在工作流中协调这些网络服务,作为其分析的一部分。结果:Taverna项目开发了一种工具,用于为生命科学社区的生物信息学工作构成和制定。该工具包括一个工作台应用程序,该应用程序提供了用于工作流量组成的图形用户界面。这些工作流是用一种新语言编写的,称为简单的概念统一流量语言(SCU lof),其中在工作流程中的每个步骤都遵循一个原子任务。使用两个示例来说明在计算机实验中可以使用工作台应用程序将其表示为SCU浮动流量的便捷性。可用性:Taverna Work流量系统可作为开源可用,可以从http://taverna.sourceforge.net contact:taverna-users@lists.sourceforge.sourceforge.net
1. 始终坚持学术诚信和诚实的原则——有关学术诚信的一般信息和资源可在学术诚信网页上找到。2. 始终遵守大学的学生行为准则。3. 始终尊重隐私和保密性,避免与生成式人工智能工具共享敏感的个人信息。4. 请记住,生成式人工智能并不总是可靠的。例如,它可能提供虚假或过时的信息或虚假的参考资料,也可能是故意误导信息的来源。5. 始终批判性地评估使用人工智能生成的响应。使用已知可靠的来源来验证信息。如果您对所生成内容的可靠性有疑问,请咨询您的讲师或导师。6. 生成式人工智能工具应用于补充学习和研究,而不是代替通过 Moodle、Talis 阅读列表和图书馆提供的可靠学术资源。 7. 生成式人工智能工具在学术工作中有很多有用的方法,包括头脑风暴、写作任务的初稿、编辑写作任务并提供写作反馈、为文章提出结构建议、使用内容制作演示文稿、为演示文稿和视频制作音乐或制作图像来说明你的工作。 8. 你的讲师会告诉你,在论文或特定评估中,是否允许、要求或禁止使用生成式人工智能工具。在哪里允许