谁可以参加 培训计划每批最多可容纳 25 名参与者。 第二年及以上的博士生将被优先考虑。 需要具备 Crispr 以及植物分子生物学的基本知识。 与基因组编辑 EFC 项目相关的科学家、博士后和研究学者将优先考虑。 2025 年 2 月 3 日至 7 日 – 博士后研究员和早期职业科学家。(https://forms.gle/wMJEeaJzhwYviARp7) 2025 年 2 月 10 日至 14 日——博士生(第 2 年及以上)和研究学者(具有至少 6 个月的经验)。(https://forms.gle/RMmeh2VYRTAhiEKx7) 旅行和住宿 参与者必须承担自己的旅行、住宿和伙食费用。从住宿地点到培训地点的当地旅行安排由参与者自行安排。主办方将承担培训期间的工作午餐。
美国政府 (USG) 对人工智能 (AI) 的国家安全影响越来越感兴趣。在本报告中,我们提出以下问题:鉴于国家安全问题,美国政府可能如何影响 AI 的研究、开发和部署——无论是在美国国内还是国外?我们对当前法律框架内美国政府的一些政策杠杆进行了通俗易懂的概述。对于每个杠杆,我们描述其起源和立法基础以及过去和现在的用途;然后我们评估其未来应用于 AI 技术的可行性。按照用于明确国家安全目的的可能性降序排列,我们涵盖了以下政策杠杆:联邦研发支出、外国投资限制、出口管制、签证审查、延长签证途径、保密令、出版前审查程序、国防生产法、反垄断执法和“天生秘密原则”。
为了实现气候目标,未来的能源系统必须严重依赖风能和光伏 (PV) 等可变可再生能源 (VRES)。随着 VRES 份额的增加,灵活性以及不同灵活性选项的智能相互作用等主题变得越来越重要。分析灵活性选项和增强未来能源系统设计的一种方法是使用能源系统建模工具。尽管存在各种可公开访问的模型,但并没有明确的评估来评估这些工具中如何体现灵活性。为了弥补这一差距,本文提取了灵活性表示的关键因素,并引入了灵活性和影响因素的新分类。为了评估当前的建模状况,我们向开放能源建模工具的开发人员发送了一份调查问卷,并使用新推出的开放 ESM 灵活性评估工具 (OpFEl) 进行分析,这是一种开源评估算法,用于评估工具中不同灵活性选项的表示。结果显示,各种不同的工具涵盖了灵活性的大多数方面。可以看出,出现了包括部门耦合元素的趋势。然而,当前模型中仍未充分体现储能和网络类型灵活性以及涉及系统运行的方面,应更详细地纳入其中。没有一个模型能够高度涵盖所有类别的灵活性选项,但通过软耦合将不同模型组合起来可以作为整体灵活性评估的基础。这反过来又可以基于 VRES 对能源系统进行详细评估。
讲座-3 模糊逻辑当我们说模糊逻辑时,那就是我们在物理设备中遇到的变量,模糊数字用于描述这些变量,并且在设计控制器时使用此方法,它就是模糊逻辑控制器。 - 让我们采取三个陈述:零,几乎零,接近零。 - 零恰好是零,真值为 1 - 如果它几乎为 0,那么我可以认为在负 1 到 1 之间,0 附近的值是 0,因为这几乎为 0。
版权页 版权所有 2021 国际药学联合会 (FIP) 国际药学联合会 (FIP) Andries Bickerweg 5 2517 JP 海牙 荷兰 www.fip.org 保留所有权利。 未经引用出处,不得将本出版物的任何部分存储在任何检索系统中或以任何形式或手段(电子、机械、录音或其他方式)转录。 FIP 对因使用本报告中的任何数据和信息而造成的任何损害不承担任何责任。已采取一切措施确保本报告中提供的数据和信息的准确性。 作者: Matthew Hung(FIP 实践发展项目助理) Victoria Chinwendu Ezeudensi(FIP 志愿者,尼日利亚) Gonçalo Sousa Pinto(FIP 实践发展和转型负责人) 本工具包包含来自 FIP 社区和医院药房部门的多项贡献,并在致谢部分列出。编辑:Gonçalo Sousa Pinto(FIP 实践发展与转型负责人)Matthew Hung(FIP 实践发展项目助理)Catherine Duggan(FIP 首席执行官)推荐引用:国际药学联合会 (FIP)。药物协调:药剂师工具包。海牙:国际药学联合会;2021 封面图片:© Tero Vesalainen | shutterstock.com
空间幻象技术的最新进展已实现了分析组织形态,细胞组成和生物分子表达模式的新方法。这些进步正在促进数字病理新兴领域中新的计算工具和定量技术的开发。在这篇综述中,我们调查了使用数字化的组织病理学幻灯片和补充材料开发用于空间映射的OMIC数据分析的计算方法的当前趋势,并重点介绍了与泌尿生殖学肿瘤学研究有关的工具和应用。评论包含三个部分:1)组织幻灯片分析的图像处理方法的概述; 2)与空间解决的OMIC数据分析的机器学习集成; 3)讨论当前局限性和未来在临床决策过程中整合机器学习的方向。
a 作物遗传育种与综合利用教育部重点实验室,油料作物研究所,豆科作物遗传与系统生物学中心,福建农林大学农学院,福州,中国;b 水稻生物学国家重点实验室,中国农业科学院,中国水稻研究所,浙江,中国;c 国家生物技术和基因工程研究所 (NIBGE),巴基斯坦费萨拉巴德;d 扬州大学园艺与植物保护学院园艺系,扬州,中国;e 塞浦路斯理工大学农业科学、生物技术与食品科学系,塞浦路斯莱梅索斯;f 西澳大利亚大学 UWA 农业研究所,澳大利亚珀斯克劳利;g 作物多样化与遗传学,国际生物盐渍农业中心,阿拉伯联合酋长国迪拜; h 印度海得拉巴国际半干旱热带作物研究所 (ICRISAT) 基因组学和系统生物学卓越中心;i 澳大利亚默多克大学国家农业生物技术中心默多克作物和食品创新中心
模具行业不断要求先进的技术来提高模具在其生命周期内的性能。直接金属沉积 (DMD) 为模具翻新提供了关键机会。然而,通过 DMD 的典型刀具路径由交替的平滑段和尖角组成。在这里,能量密度和粉末数量的波动通常会导致工具恢复部分出现严重的几何偏差。这项工作提出了一种基于机器学习的新型预测方法,该方法使用与工艺参数和执行的几何形状相关的特征来表征路径。该方法的优势已在刀具路径上得到验证,刀具路径通常表征工具翻新过程。© 2022 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
真核生物的基因组主要由散布的重复序列的各种家族组成,包括逆转录座子和可转移和内源性病毒元素。普遍的观点是,基因组重复体的多样家庭应被视为寄生虫或“垃圾DNA”(Bourque等,2018)。但是,可以遵循族谱树,或这些元素进化发展和分布的途径,因此,我们的理解应得到完全修订。重复元素在系统生物学和医学意义上扮演着角色,远远超出了“垃圾DNA”和病毒化石(Wells and Feschotte,2020年)。最近的研究越来越多地表明,基因组的基本成分,即使不是我们基因组的最基本成分,它具有病毒源,并且作为移动遗传介体的病毒在遗传进化中始终起着至关重要的作用(Cosby等,2019)。基因组的演变与克服和固定综合事件有关。随着每个重要的进化步骤,基因组中的移动遗传因素数量急剧增加。自从生活开始以来,就没有一个生物体没有所有这些不同的移动元素。在基因组的形成中,我们可以追踪涉及无数不同外观的移动元素的许多过程。基因组不是无数意外突变及其选择的最终产物,而是一种原始外部病毒感染的生活沉积物,这种矿床经常被回收,并且像编年史一样,重新解释(Vassilieff等,2023年)。为了完全发展,移动元素必须与他们的宿主基因组建立共同的关系(Gebrie,2023)。移动元件和宿主基因组的进化系统发育树显示强相关性(Kalendar等,2004; Kalendar等,2008; Moisy等,2014; Kalendar等,2020)。内源性逆转录病毒,也属于逆转录病毒,是单链