药物化合物已成为废水中越来越重要的污染物来源,因为它是传统的处理方法无效地去除它们的方法,因此它们通常被放入环境中。可以使用液体液体提取成功去除药物,并且可以使用宇宙RS预测相互作用并识别最有前途的溶剂。但是,COSMO热模型无法解释关键过程参数,从而降低了这些计算模型的准确性。因此,需要替代计算方法来准确预测可以纳入处理和相互作用变量的药物的提取产率。这项工作使用机器学习来预测使用八种溶剂的11种药物的提取产率。探索了六个回归模型和两个分类模型。使用ANN回归器(测试MAE:4.510,测试R 2:0.884)和RF分类器(测试精度:0.938,测试召回:0.974)获得了最佳性能。RF回归分析和分类还显示了关键的提取产率特征:溶剂与喂养比,N - 辛烷 - 水分系数,氢键,氢键和范德华对多余的焓的贡献,以及pH距离至最近的PKA。机器学习显示为筛选和选择最有希望的溶剂和过程条件的绝佳工具,以从废水中去除药物。
a 作物遗传育种与综合利用教育部重点实验室,油料作物研究所,豆科作物遗传与系统生物学中心,福建农林大学农学院,福州,中国;b 水稻生物学国家重点实验室,中国农业科学院,中国水稻研究所,浙江,中国;c 国家生物技术和基因工程研究所 (NIBGE),巴基斯坦费萨拉巴德;d 扬州大学园艺与植物保护学院园艺系,扬州,中国;e 塞浦路斯理工大学农业科学、生物技术与食品科学系,塞浦路斯莱梅索斯;f 西澳大利亚大学 UWA 农业研究所,澳大利亚珀斯克劳利;g 作物多样化与遗传学,国际生物盐渍农业中心,阿拉伯联合酋长国迪拜; h 印度海得拉巴国际半干旱热带作物研究所 (ICRISAT) 基因组学和系统生物学卓越中心;i 澳大利亚默多克大学国家农业生物技术中心默多克作物和食品创新中心
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可协议进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可协议的链接,并指明是否做出了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可协议中,除非在资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可协议中,且您的预期用途不被法定规定允许或超出了允许的用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http:// creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativecommons.org/publi cdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
讲座-3 模糊逻辑当我们说模糊逻辑时,那就是我们在物理设备中遇到的变量,模糊数字用于描述这些变量,并且在设计控制器时使用此方法,它就是模糊逻辑控制器。 - 让我们采取三个陈述:零,几乎零,接近零。 - 零恰好是零,真值为 1 - 如果它几乎为 0,那么我可以认为在负 1 到 1 之间,0 附近的值是 0,因为这几乎为 0。
科学家用来解释生态系统中捕获和存储的碳量的数学工具很少考虑动物的影响。这源于这样的假设:由于动物比生态系统中的植物和微生物要稀有得多,因此它们的潜在影响应该是最小的。然而,现场研究已经开始表明,这种假设可能不是准确的,如2023年3月下旬的《自然气候变化》杂志发表的《自然气候变化可以扩大自然气候解决方案》中所示。这导致了一个新的询问领域,称为碳循环(ACC)。
基于区域的管理工具(ABMT),包括海洋保护区(MPA)通常是静态的,无法反映海洋生态系统的动态现实。海洋生态系统的特征是它们的体现不断变化,这进一步由人为应激源(尤其是气候变化)扩大。ABMT和MPA的前提是以环境平衡的隐式假设,因为它们的边界和管理框架通常被固定,并且很难进行调整。本文试图在静态保护策略与海洋生态系统的深刻和天生的动态性质之间揭开张力。它进一步旨在推进动态ABMT的概念,提出了对ABMT治理的综合概念化,这种概念更容易应对复杂海洋生态系统提出的复杂海洋生态系统动态的挑战类型。的动态被广泛地解释为包含三个维度:空间,具有流动和可调的保护措施;规范性,表示一种动荡和自适应的管理框架,该框架利用生态和管理阈值作为适应性,及时和前瞻性方法来增强管理结果的发起人;和制度,即,充分灵活而动态的机构机制负责监督ABMT实施。在对动态ABMT的全面概念化之后,本文解决了以下问题,管理着海洋的法律框架是否可以维持这种动态的海洋治理模式。
识别导致神经遗传疾病的 DNA 变异的主要瓶颈是 VUS 的功能分析。本研究的目的是通过在 NPC 和斑马鱼中使用 CRISPR/Cas9 基因组编辑来开发一种方法,以对在巨脑回患者中观察到的候选致病变异进行建模。通过 aCGH 和 WES 分析了 20 名巨脑回/无脑回患者的 DNA,并确定了变异的优先级。通过使用 CRISPR/Cas9 基因组编辑在 NPC 和斑马鱼中生成突变系,并与已知在巨脑回/无脑回中发挥作用的三个关键基因(TUBG1、LIS1、DAB1)之一的模型进行了比较。使用 3D 基质胶腔系统 (ICChip) 对 NPC 进行表征,并在 3 dpf 和 5 dpf 时观察到发育中的斑马鱼的表型变化。使用 qPCR 对目标突变系和选定的变体系进行了比较。与对照组相比,在 3 个选定基因的突变 NPC 系中观察到迁移延迟。WES 确定了两个候选变体,CGREF1 和 NOL9。观察到 CGREF1KO 斑马鱼和 CGREF1KONPC 中无脑畸形和小头畸形相关基因和神经元分化基因的表达变化。在 Tubg1 突变斑马鱼中观察到严重的表型,包括小头和小眼,以及肝脏/肠道发育异常。我们的研究结果证明,使用 NPC 和斑马鱼模型可以以省时省钱的方式测试导致与 NPC 迁移相关的缺陷的变异。多组学分析可以进一步将这种方法的使用范围扩展到其他神经遗传缺陷组。该项目由 TUBITAKCOST Action 资助,代码号为 217S944。
有很多 Python 包可用,但没有一个可以处理气候数据集的多维。它安装起来非常容易(一行命令),不需要任何特殊的计算机,并且适用于 Window、Mac 和 Linux/Unix 系统。Xcast 并行化代码,因此速度更快。它包括所有传统方法(MLR、PCR、CCA)和最先进的 AI/ML 方法(如 ANN、随机森林等)。它读取 NetCDF/Grib2/Zar 数据,而传统工具需要“ASCII 格式”。它还可以读取任何模型输出(NMME、C3S、S2S 和 SubX 或您自己的)。它不仅仅是一个“Jupyter 笔记本”,而是一个 Python 包。
空间幻象技术的最新进展已实现了分析组织形态,细胞组成和生物分子表达模式的新方法。这些进步正在促进数字病理新兴领域中新的计算工具和定量技术的开发。在这篇综述中,我们调查了使用数字化的组织病理学幻灯片和补充材料开发用于空间映射的OMIC数据分析的计算方法的当前趋势,并重点介绍了与泌尿生殖学肿瘤学研究有关的工具和应用。评论包含三个部分:1)组织幻灯片分析的图像处理方法的概述; 2)与空间解决的OMIC数据分析的机器学习集成; 3)讨论当前局限性和未来在临床决策过程中整合机器学习的方向。
已经确定,评估矿床的储层特性的标准方法是在矿床开发的技术文档开发中积累不确定性的来源。这项工作旨在开发一种改进的方法来评估矿床的收集者特性。提议将动作算法添加到确定样品的代表性体积,构建其三维模型并进行数字化的阶段。在最后阶段,使用Minkowski函数确定样品内部孔的连通性,以提高存款开发的项目文档质量。指南来改善评估存款的收集者特性的标准方法。使用改进的方法来评估矿床的储层特性会导致不确定性的较低程度,并有助于在其开发的设计阶段形成更可靠的储层作战情况。提出的研究将对外国承包商公司的工程人员有用,因为它证明需要收集其他核心材料并设置有关存款收藏家财产的信息的质量标准。