生物膜包括许多导致牙周疾病的微生物。由于过度使用了广泛的抗生素,对传染病的耐药性增加是一个主要问题。最近,正在施用金属纳米颗粒(NP)来控制不同类型的微生物的生长。例如,发现金纳米颗粒(AU NP)成功地控制和限制了口腔中的细菌致病性,而对人体没有任何细胞毒性作用。目标。在本文中,它的目的是检测AU NP的抗菌作用,并与氯己定(CHX)与慢性牙周炎患者牙菌斑中的氯己定(CHX)相比。材料和方法。首先,从患有牙周疾病的患者中收集截面和尺寸斑块样品,并在有氧或/和/和/和厌氧疾病下孵育。第二,使用Vitec 2机器的形态检查和生化测试用于确认s。Oralis物种。 第三,通过种子生长法进行了Au NP的合成,并表征了它们的特性。 最后,通过琼脂井扩散法对不同的Au NPS浓度(100、50、25、12.5、6.25、6.25、3.125、1.562、0.781、0.781、0.391、0.391、0.195和0.097 ppm),通过琼脂扩散方法评估了AU NPS对Oralis的抗菌作用。 CHX用作阳性对照,并蒸馏水作为阴性对照。 结果。 表征了平均颗粒大小为43 nm的Au NP,表征了多晶面式的立方结构。Oralis物种。第三,通过种子生长法进行了Au NP的合成,并表征了它们的特性。最后,通过琼脂井扩散法对不同的Au NPS浓度(100、50、25、12.5、6.25、6.25、3.125、1.562、0.781、0.781、0.391、0.391、0.195和0.097 ppm),通过琼脂扩散方法评估了AU NPS对Oralis的抗菌作用。CHX用作阳性对照,并蒸馏水作为阴性对照。结果。表征了平均颗粒大小为43 nm的Au NP,表征了多晶面式的立方结构。使用社会科学统计计划(SPSS)版本22对统计数据进行了统计分析。Au nps以100 ppm浓度的浓度具有相似的CHX抗菌作用,以抑制Oralis链球菌的生长,没有显着差异。结论。在较高浓度下使用时,Au nps作为抗菌剂对类似于CHX的S. Oralis同样有效。
准确的工具跟踪对于计算机辅助干预的成功至关重要。以前的努力通常会严格地对工具轨迹进行建模,从而俯瞰外科手术程序的动态性质,尤其是跟踪诸如身体外和相机外视图之类的场景。在解决此限制时,新的CholectRack20数据集提供了详细的标签,以三个角度说明多个工具轨迹:(1)术中,(2)体内和(3)可见性,代表不同类型的工具轨迹时间。这些细粒标签可增强跟踪灵活性,但也提高了任务复杂性。由于高视觉相似性,尤其是在同一类别的工具中,遮挡或重新插入身体后的工具仍然具有挑战性。这项工作认识到工具操作员在区分工具轨道实例中的关键作用,尤其是属于同一工具类别的工具轨道实例。但是,在手术视频中未明确捕获操作员的信息。因此,我们提出了Surgitrack,这是一种利用Yolov7进行精确工具检测的新型深度学习方法,并采用了注意机制来对工具的起源方向进行建模,作为其操作员的代理,以重新识别工具。为了处理各种工具轨迹的观点,Surgitrack采用了协调的两分匹配图,最大程度地减少冲突并确保准确的工具身份关联。cholectrack20的实验结果证明了外科手术的有效性,优于实时推理能力的最先进方法和最先进的方法。这项工作为手术工具跟踪设定了新的标准,为在微创手术中提供了更适合适应性和精确的帮助。
Multibeam Echosounder(MBE)已成为海底映射的主要工具。技术进步和改进的数据处理方法提高了测深测量的准确性和空间分辨率,并且还导致了MBES反向散射数据的使用越来越多,用于海底地质和底栖生物栖息地映射应用。MBES BackScatter现在经常用于表征海洋陆战队和动物区系的栖息地,有助于开发有效的海洋空间规划和管理策略,并且通常可以更好地对海床进行分类。最近,进一步的技术进步使得在多声纳操作频率(多频反向散射)下对反向散射的获取和分析具有后续的潜在利益,可改善海底表征和分类。本评论重点介绍了与多频的海流声学反向散射相关的当前可用的同行评审论文,从而对不同底栖环境的贡献进行了全面的摘要,为相关应用程序和概述挑战和研究指示奠定了基础。
益生菌被定义为活的微生物,可以促进肠道和肠外健康的好处,当时有足够的数量消耗(Hill等,2014)。由于其安全性和促进健康的特性,几种双杆菌,乳酸杆菌和肠球菌已被分类为益生菌。这些微生物通常在各种栖息地中发现,例如乳制品和非乳制发酵产物,哺乳动物胃肠道菌群和环境。为了将新的菌株分类为益生菌,应满足许多标准:抗胃肠道转移的抵抗力,缺乏毒力和可传播的抗生素耐药性基因以及促进健康的活性(例如抗菌,免疫抑制性和抗毒剂和抗毒剂)。监管机构已经建立了常规的微生物学测定,以评估这些表型(FAO/WHO,2001)。此外,现在正在使用高通量多词方法来补充现有方法,并将更深层次的分子和细胞见解与益生菌 - 宿主相互作用(Kiousi等,2021)。在(元)基因组学时代,益生菌菌株的整个基因组序列(WGS)的可用性呈指数增长。基因组元素在益生菌研究中的整合支持了新菌株的安全性和功能性的预测。此外,由于其较高的歧视能力,WGS是将新分离株分类为物种分类分类的“黄金标准”。的确,WGS的可用性增加促进了多样化的乳杆菌属的重新分类。基于共同的生态和代谢特性,分为25属(Zheng等,2020)。目前,EFSA需要在食物链中使用微生物WG,以监测关注的基因(例如,毒力因子,抗生素耐药性基因)(EFSA,2024年)。在这种情况下,Wei等人进行了补充了体外测定的基因组分析。评估limosilactobacillus reuteri A51的安全性和功能性状,这是先前从Yak酸奶中分离出来的菌株。菌株被发现编码与胃肠道应力反应,生存和附着的基因以及用于抗菌化合物和外多糖的生物合成簇。该菌株还表现出对模拟胃肠道条件以及抗氧化剂和
为了解决这个问题,金教授的团队专注于翻译耦合,这是一种自然基因调节机制,通常在操纵子中发现的自然基因调节机制,该机制调节多个基因,上游基因的翻译影响下游基因的翻译效率。通过这项研究,该团队设计了模拟该机制的同义词,并将其与合成生物学RNA设备成功整合在一起,以创建更有效的遗传回路。
随着公共数据库中核基因组的增加,比较基因组学方法现在使用数百种基因组来分析物种多样性。许多研究着重于整个物种基因含量,即pangenome,以了解其在流行病学或环境数据方面的共同和可变基因方面的进化。在这种情况下,我们一直在研究基因组数据表示作为pangenome图。我们开发了用于重建和分配的pangenome重建和分区(Ppanggolin 1),基因组可塑性鉴定区域(PANRGP 2)和模块检测(PanModule 3)的方法。与Panorama一起,我们将实现新的方法论发展,以进行pangemenomes的比较研究。 将有助于研究细菌的适应潜力,并更好地了解微生物代谢多样性背后的进化动力学。与Panorama一起,我们将实现新的方法论发展,以进行pangemenomes的比较研究。将有助于研究细菌的适应潜力,并更好地了解微生物代谢多样性背后的进化动力学。
抽象目的 - 尼泊尔的扩展系统遭受高交易成本,覆盖范围有限和资金不足。解决方案在于集成数字扩展工具,但它们通过扩展代理的采用非常低。这项研究探讨了影响这些工具在尼泊尔的Bagmati和Gandaki省的扩展代理中采用的因素。设计/方法/方法 - 本研究采用了定量调查来收集128名参与者的数据。首先,使用因子和聚类分析将参与者分为三个部分。其次,logit模型用于确定采用决策的决定因素。调查结果 - 三个确定的部分被称为“爱好者”,保守派和“实用主义者”。“爱好者”部分(基线)表现出浓厚的兴趣,“保守派”表示保留,而“实用主义者”对数字扩展工具表现出平衡的看法。logit回归分析表明,较高的层次排名,移动应用的使用和男性大大增加了采用的可能性。相反,“保守派”部分,经验,通过互联网接收办公空间和培训支持大大降低了采用的可能性。研究局限性/含义 - 从培训和办公室支持的惊人结果中,是负面影响者的负面影响者,我们可以暗示当前针对培训计划和办公设施的资源分配是无效的。关键字数字扩展工具,因子分析,集群分析,logit模型,采用纸张类型研究论文政策制定者应重新审视资源分配策略,并探索有助于整合数字扩展工具的新方法。独创性/价值 - 参与者细分的方法论方法通过根据采用者的态度,信念和预尊态对创新理论的扩散来补充创新理论的传播。
帕金森氏病是第二频繁的神经退行性疾病,在60岁以上的成年人中影响约1%。其他运动障碍,例如多个系统萎缩,亨廷顿氏病,肌张力障碍或小脑共济失调,可能不那么普遍,但严重损害了患者的生活质量。不仅这些疾病中许多疾病的病理生理学不完全理解,而且诊断工具和治疗性干预措施也常常不足。机器学习(ML)是人工智能(AI)的主要特征,即基于计算机的智能,能够执行类似人类的任务。AI和ML在医疗保健环境中的应用可能参与开发和应用新的疾病诊断和治疗方法,药物发现过程,并深入研究某些疾病的病理生理学。在这里,我们使用基于AI/ML的工具介绍了一些科学文章,以诊断,预后和治疗帕金森氏病和其他运动障碍,包括其他也以多巴胺能功能障碍为特征的其他工具。这些是:通过对中脑MRI进行深入学习,帕金森氏病的分类。作者比较了PD患者和健康对照中四种方法的诊断性能(Welton等人)。易感性映射加权成像(SMWI)基于定量易感映射(QSM),允许准确的Nigrosome-1(N1)评估,并已用于开发帕金森氏病(PD)深度学习(DL)分类算法。数据表现出神经素敏感的(NMS)MRI可以通过揭示神经元素含量来改善自动定量N1分析(Fu等,2016; Shin等,2021; Sung等,2019)。本研究中比较的四种诊断方法是:(1)N1定量“ QSM-NMS”复合标记,(2)使用SMWI(“ Heuron IPD”)的N1形态异常的DL模型(3)DL模型,用于N1使用SMWI(“ Heuron ni Ni”)和(4)N1 smwi neuror n Neuror neuror neuror neuror neuror neuror neuror neuror neuror neuror neurorar neuror。
微生物膜标记包。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3丰度。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3骨架_taxa。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4分配 - otu_table。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 compare_da。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6混杂器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7个数据库。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8个数据cid_ying。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8个数据ECAM。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。8个数据ECAM。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9个数据输入_arumugam。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9个data-kostic_crc。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10个数据氧。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10个数据pediatric_ibd。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11个数据 - 跨性别_colitis。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 extract_posthoc_res。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 get_treedata_phyloseq。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 import_dada2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 import_picrust2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 import_qiime2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 Marker_table。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 Marker_table类。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 Marker_table < - 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17微生物膜标记物。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18微生物级。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 nmarker。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20归一化,门索方法。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21 Thyloseq2Seq2。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 Teyloseq2Dger。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。24 Thyloseq2metagenomeseq。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 plot.compareda。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 plot_abundance。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 plot_cladogram。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 plot_f_bar。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>28 plot_heatmap。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。29 plot_posthoctest。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 polot_sl_roc。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31后测。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32后级。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33个重新示例。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 run_aldex。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 run_ancom。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37 run_ancombc。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 run_deseq2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41 run_edger。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44
用于科学数据分析的各个方面都有成千上万个维护良好的高质量开源软件实用程序。十多年来,Galaxy项目一直为这些工具提供计算基础架构和统一的用户界面,以使其可供广泛的研究人员使用。为了简化尽可能多的集成工具和集成工作流程的过程,我们开发了PlaneMo,这是一种用于工具和工作流开发人员和Galaxy Power用户的软件开发套件。在这里,我们概述了Planemo的实施,并描述了其用于设计,测试和执行Galaxy工具,工作流程和培训材料的广泛功能。此外,我们讨论了哲学的基础星系工具和工作流程开发,以及Planemo如何鼓励使用开发最佳实践,例如测试驱动的开发,包括那些不是专业软件开发人员的人。
