人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
我从以前的学习初级科学中知道的:天气的变化,化石形成磁铁:某些力需要2个物体之间的接触,但是磁力可以在距离处作用。磁铁如何吸引或排斥并吸引某些材料,而不是其他磁性材料的名称 - 铁镍钴钢
3.1特应性皮炎是一种慢性,经常燃烧的,普遍的皮肤状况,影响儿童,年轻人和成人。特应性皮炎的症状包括干燥,片状和发炎的皮肤,可能发痒。患者专家解释说,这种病经常被误解和解雇,但是瘙痒可能会对生活质量产生严重影响,包括引起睡眠障碍。患者专家进一步解释说,这种病正在使人衰弱和孤立,并影响生活的各个方面(身体,心理,社会和财务)。临床专家指出,患有特应性皮炎的成年人的心理健康状况(包括抑郁,焦虑和自杀)的证据比普通人群中的迹象更高。他们解释说,特应性皮炎是一种异质性疾病,具有多种治疗选择,包括其他生物药物,例如勒布里库珠单抗,很有用。
Brian Drake 是国防情报局未来能力与创新办公室的人工智能主任。他领导该机构的人工智能研究和开发投资组合。作为一名分析师,他领导多个团队应对来自国家和非国家行为者的威胁,涉及技术、反情报和禁毒主题。他曾担任德勤咨询公司的经理和托夫勒联合公司的管理顾问,专门为商业和政府客户提供战略规划、业务发展、合作咨询、技术和创新服务。他还曾担任系统规划和分析公司的军事平台和政策分析师以及 DynCorp 的核武器计划分析师。他拥有默瑟大学的文学学士学位和乔治城大学的硕士学位。除了他的官方职责外,他还是国防情报纪念基金会的总裁兼首席执行官;为阵亡国防情报官员的子女设立的奖学金基金。
这个神话在90年代出现,当时一位前医生指控没有科学证据表明该联合疫苗(针对腮腺炎,麻疹和风疹)可能会损害神经,从而导致自闭症。后来知道他的数据(12个孩子)是伪造的,并且他在传播错误信息方面具有个人经济利益。由于不道德的行为,他的医疗许可证被提取。他的合着者和《研究》公开发表的《研究》与他的主张和论文被撤回的期刊被撤回。
1。免疫和抗原的定义,免疫系统的功能和基本原理。2。淋巴器官和组织的结构和功能。3。先天免疫的概念,特征和任务。4。先天免疫的细胞元素。5。先天免疫的体液元素。6。获得免疫的特征。7。主要组织相容性复合物(MHC)的组织;它编码的蛋白质的结构和功能。8。抗原加工和表现。9。成熟以及T和B淋巴细胞的检查点。10。抗原识别受体(TCR和BCR)形成的遗传过程。11。抗原识别T淋巴细胞,T淋巴细胞激活的过程。12。辅助T细胞的亚型及其功能。13。调节T细胞及其功能的形成。14。细胞毒性T细胞的特征和功能。15。B淋巴细胞的亚型。 16。 抗原识别,T细胞依赖性和独立的B淋巴细胞激活。 17。 生发中心的过程。 18。 结构,同种型,抗体的效应函数。 19。 免疫记忆的发展。 20。 疫苗接种,主动和被动免疫。 21。 22。 23。 24。B淋巴细胞的亚型。16。抗原识别,T细胞依赖性和独立的B淋巴细胞激活。17。生发中心的过程。18。结构,同种型,抗体的效应函数。19。免疫记忆的发展。20。疫苗接种,主动和被动免疫。21。22。23。24。成员,激活和补充系统的任务。炎症和急性期反应。免疫耐受性的概念和发展。中央和周围公差的过程。自身免疫性疾病,器官特异性和系统性自身免疫性疾病的发展。25。肿瘤免疫学,肿瘤抗原及其免疫反应。26。在治疗肿瘤的免疫疗法。 27。 识别病原体模式及其功能的受体组。 28。 针对细胞外病原体和逃生机制的免疫反应。 29。 针对细胞内病原体和逃生路线的免疫反应。 30。 特征,介体,I型超敏反应(过敏)反应的疗法。 31。 II。,III型高敏反应的机制和实例。 和IV。 32。 移植,排斥反应和治疗选择中的免疫学概念。 33。 免疫特权,母亲关系的免疫学。 34。 理论背景和基本免疫学方法的应用。在治疗肿瘤的免疫疗法。27。识别病原体模式及其功能的受体组。28。针对细胞外病原体和逃生机制的免疫反应。29。针对细胞内病原体和逃生路线的免疫反应。30。特征,介体,I型超敏反应(过敏)反应的疗法。31。II。,III型高敏反应的机制和实例。和IV。32。移植,排斥反应和治疗选择中的免疫学概念。33。免疫特权,母亲关系的免疫学。34。理论背景和基本免疫学方法的应用。
5-贵金[1] Alexander,D.J。,Aldous,E.W。和Fuller。 C.M. )2012年(长期观点:对40年纽卡斯尔疾病研究的选择性评论。 禽病。 41(4),329-35。 [2] Altschul,S.F.,Gish,W。Miller,W。Myers,E.W。 和Lipman,D.J。 )1990(基本本地对齐搜索工具。 J. Mol。 生物。 215(3),403-10。 [3] Ansori,A.N。和Kharisma,V.D。 )2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。 eksakta:J。Sci。 数据肛门。 20(1),14-20。 [4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I. (2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。 PLOS ONE 11(9),E0162484。 [5] Brown,V.R。和Bevins,S.N。 (2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。 兽医。 res。 48(1),1-5。 [6] De Leeuw,O。和Peeters,B。 (1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。 J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。5-贵金[1] Alexander,D.J。,Aldous,E.W。和Fuller。C.M. )2012年(长期观点:对40年纽卡斯尔疾病研究的选择性评论。 禽病。 41(4),329-35。 [2] Altschul,S.F.,Gish,W。Miller,W。Myers,E.W。 和Lipman,D.J。 )1990(基本本地对齐搜索工具。 J. Mol。 生物。 215(3),403-10。 [3] Ansori,A.N。和Kharisma,V.D。 )2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。 eksakta:J。Sci。 数据肛门。 20(1),14-20。 [4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I. (2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。 PLOS ONE 11(9),E0162484。 [5] Brown,V.R。和Bevins,S.N。 (2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。 兽医。 res。 48(1),1-5。 [6] De Leeuw,O。和Peeters,B。 (1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。 J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。C.M.)2012年(长期观点:对40年纽卡斯尔疾病研究的选择性评论。禽病。41(4),329-35。[2] Altschul,S.F.,Gish,W。Miller,W。Myers,E.W。和Lipman,D.J。)1990(基本本地对齐搜索工具。J. Mol。 生物。 215(3),403-10。 [3] Ansori,A.N。和Kharisma,V.D。 )2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。 eksakta:J。Sci。 数据肛门。 20(1),14-20。 [4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I. (2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。 PLOS ONE 11(9),E0162484。 [5] Brown,V.R。和Bevins,S.N。 (2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。 兽医。 res。 48(1),1-5。 [6] De Leeuw,O。和Peeters,B。 (1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。 J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。J. Mol。生物。215(3),403-10。[3] Ansori,A.N。和Kharisma,V.D。 )2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。 eksakta:J。Sci。 数据肛门。 20(1),14-20。 [4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I. (2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。 PLOS ONE 11(9),E0162484。 [5] Brown,V.R。和Bevins,S.N。 (2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。 兽医。 res。 48(1),1-5。 [6] De Leeuw,O。和Peeters,B。 (1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。 J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。[3] Ansori,A.N。和Kharisma,V.D。)2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。eksakta:J。Sci。数据肛门。20(1),14-20。[4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I.(2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。PLOS ONE 11(9),E0162484。[5] Brown,V.R。和Bevins,S.N。(2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。兽医。res。48(1),1-5。[6] De Leeuw,O。和Peeters,B。(1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。J. Virol。80(1),131-6。[7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H.病毒学531,203-18。2017。(2019)2018年至2019年加利福尼亚疫情及其相关病毒在年轻鸡和相关病毒中的致病性和传播。[8] Dimitrov,K.M。,Afonso,C.L.,Yu,Q。和Miller,P.J。纽卡斯尔疾病疫苗 -
功能能力评估评估人工人执行与特定工作相关的任务的能力。今天,由职业医生进行的标准医学检查包括(1)访谈,以确定特定工作中执行的运动以及所采用的相应表达,(2)观察工人的身体运动,该运动专门针对工人在工作中所采用的表达,以及(3)在运动期间工人遇到的痛苦报告。令人惊讶的是,目前不进行此类考试的标准化和自动化。我们已经根据计算机视觉和机器学习技术开发了一种自动功能能力评估的自动化系统,该系统评估了人类运动的视频记录,从而为它们提供了功能能力的归一化分数。但是,我们缺乏有关工人疼痛来源的客观信息。我们要解决的科学问题是如何将疼痛感知整合到自动功能能力评估系统中?具体来说,我们如何使用热摄像头确定炎症是疼痛的来源?关键字:计算机视觉摄像机人体运动质量评估功能能力评估背景/能力/技能所需的候选人: div>
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
摘要。验证的可靠性和实用性取决于适当表示不确定性的能力。关于神经网络验证的大多数现有工作依赖于输入的基于集合或概率的信息的假设。在这项工作中,我们依靠不精确的概率(特定P-boxes)的框架提出了Relu神经网络的定量性验证,这可以说明输入的概率信息和认识论的不确定性。,可以提高紧密性和效率之间的贸易,同时处理在投入方面的不确定性类别的更一般类别,并提供了完全确保的结果。