gan lna B. Pinault A,B,J.G。Tartarin a,b , D. Saugnon a , , R. Leblanc c a Laboratoire d'analyse et d'architecture des systèmes (LAAS-CNRS), Toulouse, France b Paul Sabatier University, University of Toulouse, Toulouse, France c OMMIC, Limeil-Brévannes, France Abstract In this article, we study the robustness of 3 versions of a single stage LNA configured根据对电磁干扰信号的探测率或鲁棒性的不同模式。将10 GHz处的RF步长的连续序列应用于研究的3个LNA中的每个序列。这些强大的MMIC LNA是使用OMMIC技术的D01GH GAN工艺设计的,从名义低噪声模式转换为高线性模式。此DC偏置开关允许将功率输入1DB压缩点增加8 dB。本研究的重点是这些LNA(敏捷的LNA #A)在标称低噪声模式(具有较低IP 1DB)或标称高性线模式(以退化的噪声图NF 50的价格)下进行操作时的鲁棒性。使用较大尺寸的设备(可鲁棒的LNA #R)将此原始的LNA #A与强大的常规设计进行了比较。踩压在10 GHz的过程中,这是这些LNA的中心频带。所有操作模式均显示出表现出相当可重现的阶跃应力图,尽管可以在低噪声和高线性操作条件之间区分热或非线性效应,并且与强大的设计LNA #R相比。引言由于其内在特性,GAN LNA提供了有趣的解决方案,用于需要高探测性和鲁棒性来攻击的应用。我们证明了用于实现自然电子保护的常规LNA电路设计策略的替代方法的相关性,而没有放置LNA #A或LNA #R之前放置的限制器,或者无需关闭DC偏见:此保护选项受益于将LNA保持在操作中的lna,即在事件输入信号增加的情况下,即使在Electial defraded Inflad decrademention中,在运行率发现的情况下,n. RF步长应力。它允许对接收器进行新的定义,因为它们还可以集成RF滤波器,并且可以承受比GAAS对应物更高的温度。因此,它们是雷达和电信应用的出色候选人。系统能够承受高水平RF功率的能力通过其在最终攻击中保持运行的能力来评估,也可以在压力周期后返回名义操作模式。为了充分利用氮化岩的特性,我们设计了一个能够在两个不同静止点上自我配置的LNA,从而可以将低噪声图(NF 50)和高1DB压缩点组合在设备输入(IP 1DB)。然后,图1所示的相同LNA #A能够在标称低噪声模式下运行(NF 50 = 0.95 db / ip 1db = 4 dbm),并在强烈的线性模式下< / div>
合成维度对研究多种类型的拓扑,量子和多体物理学产生了极大的兴趣,它们为模拟有趣的物理系统(尤其是在高维度中)提供了灵活的平台。在本文中,我们描述了一种可编程的光子设备,能够在具有任意拓扑和尺寸的晶格中模仿一类Hamiltonians的动力学。我们得出了设备物理学和感兴趣的哈密顿量之间的对应关系,并模拟了该设备的物理学,以观察到各种物理现象,包括Hall Ladder中的手性状态,有效的量规电位,以及高度晶格中的振荡。我们提出的设备为在近期实验平台中研究拓扑和多体物理学开辟了新的可能性。
摘要 - 电流镜是在Mi-Croelectronics中广泛使用的电路,尤其是在模拟IC设计中。它们作为原理是输出节点处参考电流的复制品的生成。本文旨在对NMOS电流镜的不同拓扑,特别是简单的电流镜,cascode电流镜和Wilson Current Mirror进行比较研究。我们分析了它们有关晶体管的通道宽度(W)和工作温度的电气特征。Cadence Virtuoso被用作模拟工具,目标过程技术为130 nm。结果,我们发现,通过增加晶体管的W,最小输出电压会降低。此外,我们注意到三个拓扑中的温度比输出电流产生的影响。最后,可以得出结论,当前的镜子遵循了主要文献的预期模式,并朝着代表命令MOSFET晶体管的主要方程式的方向融合。索引项 - cascode电流镜,简单电流镜,Wilson Current Mirror。
• 拓扑 2:T 型拓扑因晶体管围绕中性点 (VN ) 排列的方式而得名。Q1 和 Q2 连接直流链路,Q3 和 Q4 与 VN 串联。滤波器看到的纹波频率等于施加到开关 Q1 至 Q4 的 PWM 频率。这定义了滤波器元件的大小,以实现交流线路频率下所需的低总谐波失真。Q1 和 Q2 看到全总线电压,并且需要额定为 1,200 V,才能在系统中为 800 V 直流链路电压。由于 Q3 和 Q4 连接到 VN ,它们只看到一半的总线电压,并且在 800 V 直流链路电压系统中可以额定为 600 V,这节省了这种转换器类型的成本。请参阅 10 kW 双向三相三级 (T 型) 逆变器和 PFC 参考设计。 • 拓扑结构 3:在有源中性点钳位 (ANPC) 转换器拓扑结构中,VN 与有源开关 Q5 和 Q6 连接,并将 VN 设置在直流链路电压的中间。与 T 型转换器一样,滤波器看到的纹波频率等于定义交流线路滤波器大小的 PWM 频率。这种架构的优点在于,所有开关的额定电压都可以是最大直流链路电压的一半;在 800-V 系统中,您可以使用额定电压为 600-V 的开关,这对成本有积极影响。关闭此转换器时,重要的是将每个开关上的所有电压限制为直流链路电压的一半。换句话说,控制微控制器 (MCU) 需要处理关机排序。TI 的 TMS320F280049C 和 C2000™ 产品系列中的其他设备具有可配置逻辑,允许在硬件中实现关机逻辑,以减轻 MCU 的软件任务负担。请参阅基于 GaN 参考设计的 11kW、双向、三相 ANPC。• 拓扑 4:中性点钳位 (NPC) 转换器拓扑源自 ANPC 拓扑。此处,VN 通过二极管 D5 和 D6 连接,并将 VN 设置在 DC 链路电压的中间。滤波器看到的输出纹波频率等于定义 AC 线路滤波器大小的 PWM 频率。与 ANPC 拓扑一样,所有开关的额定电压都可以是最大 DC 链路电压的一半,但不是另外两个开关,而是两个快速二极管。与 ANPC 拓扑相比,NPC 拓扑的成本略低,但效率略低。关断排序的要求也与 ANPC 拓扑相同。可以很容易地从上面提到的 ANPC 参考设计中派生出 NPC 拓扑。• 拓扑 5:飞行电容拓扑已经告诉您此转换器中发生的情况;电容器连接到由 Q1 和 Q2 以及 Q3 和 Q4 实现的堆叠半桥的开关节点。电容器两端的电压被限制为直流链路电压的一半,并在 V+/V– 之间周期性地变化;变化时,功率传输。此拓扑在正和负正弦波期间使用所有开关。在此拓扑中,滤波器看到的输出纹波频率是飞跨电容器每个周期移位的 PWM 频率的两倍,从而导致交流线路滤波器尺寸较小。同样,所有开关的额定电压均为最大直流链路电压的一半,这对成本有积极影响。
在本文中,确定并检查了多个输入DC-DC转换器中的当代发展。寻求减轻与在分销系统和电动Ve Hicles(EV)中使用可再生能源相关的困难的追求,产生了许多新的转换器拓扑。这些新拓扑具有更轻松的控制,较低的零件,更便宜,值得替代转换器的典型系列或并行连接。转换器由三个部门识别,这些划分困扰了各个端口之间的隔离。电连接的转换器在端口之间没有隔离,因此DC链接连接端口。电磁连接的转换器使用DC-Link连接输入端口,但输入端口和输出端口是隔离的。在磁连接的转换器中,输入端口被多个绕组的trans隔开,就像输出端口是通过绕组从输入端口隔离的一样。将介绍转换器的形成,结构,炭化,操作,优点和缺点。此后,将根据转换器的不同特征进行比较。本评论确定了转换器属性取决于特定的应用程序要求,因此,没有转换器满足行业中的所有需求。建议未来的研究趋势。这项工作旨在更新自上次全面评论以来时间间隙进行的研究。
较早的一代住宅太阳能系统与逆变器相关,后者将电源从太阳能电池板转换为阳光数小时的电源。超额电源可以卖回公用事业公司,但是在黑暗的几个小时内,最终用户仍然必须依靠公用事业来供电。公用事业公司能够通过调整其定价模型并将住宅客户调整到“使用时间”费率来利用这些限制,从而在没有太阳能时收取更多费用。将ESS添加到系统中,使用户能够通过所谓的“剃须刀”来对抗并保护自己免受高能源成本的影响,并将其太阳能电池板收集的电力存储在电池中,并使用这些电池随时提供电力需求。电池技术的发展导致了锂离子(锂离子)电池组的生产,其单位质量和单位量的充电存储量比较旧的技术铅酸电池高得多。结合有效的双向功率转换系统,这些系统可用于在3至12千瓦的范围内创建紧凑的壁挂式ESS单元,能够提供24小时或更长时间的房屋。,尽管具有能量密度优势,但锂离子电池有一些缺点,尤其是在安全方面,包括在高压下过热或损坏的趋势。这可能会导致热失控和燃烧,因此需要安全机制来限制电压和内部压力。存储容量由于老化而导致多年操作后最终失败而导致存储容量也会恶化。因此,每个电池组都必须包括电子电池管理系统(BMS),以确保安全有效的操作。与太阳逆变器不同,ESS必须以两种不同的模式运行:1。充电模式,电池充电2。备用模式,当电池为此提供连接负载的电源时,ESS电源转换系统始终是双向的。与太阳能电池板相结合的住宅ESS被广泛分为DC或AC耦合系统。在DC耦合系统中,单个混合逆变器结合了双向电池转换器的输出和DC-DC太阳能MPPT(最大功率点跟踪)在通用的直流总线上,然后提供网格绑定的逆变器阶段。但是,AC耦合系统(有时称为“ AC电池”)变得越来越流行,因为这种类型的ESS可以很容易地添加到本来已经存在的太阳能安装中,该安装原本不包括储能。这是因为AC耦合ESS直接与网格绑定。另一个优势是可以轻松地平行此类系统以提供更大的功率能力和存储能力。
早期的住宅太阳能系统通过逆变器与公用电网相连,逆变器在日照时间内将太阳能电池板的电力转换为交流电。多余的电力可以卖回给公用事业公司,但在黑暗时期,最终用户仍然必须依靠公用事业公司提供电力。公用事业公司已经能够利用这些限制,通过调整定价模式,将住宅客户转移到“使用时间”费率,从而在太阳能不可用时收取更多费用。在系统中添加 ESS 使用户能够应对这种情况,并通过所谓的“削峰”保护自己免受高昂的能源成本,将太阳能电池板收集的电力存储在电池中,并随时使用这些电池满足他们的电力需求。电池技术的发展导致了锂离子 (Li-ion) 电池组的生产,其单位质量和单位体积的电荷存储量比旧技术的铅酸电池高得多。结合高效的双向电源转换系统,这些电池可用于创建 3 至 12 千瓦范围内的紧凑型壁挂式 ESS 装置,能够为家庭供电 24 小时或更长时间。然而,尽管锂离子电池具有能量密度优势,但它们也有一些缺点,特别是在安全性方面,包括在高电压下容易过热或损坏。这可能会导致热失控和燃烧,因此需要安全机制来限制电压和内部压力。存储容量也会因老化而降低,导致运行几年后最终出现故障。因此,每个电池组都必须包含一个电子电池管理系统 (BMS),以确保安全高效的运行。与太阳能逆变器不同,ESS 必须在两种不同的模式下运行:1. 充电模式,即电池正在充电时 2. 备用模式,即电池为连接的负载供电时 因此,ESS 电源转换系统始终是双向的。与太阳能电池板结合的住宅 ESS 大致分为直流或交流耦合系统。在直流耦合系统中,单个混合逆变器将双向电池转换器和 DC-DC 太阳能 MPPT(最大功率点跟踪)级的输出组合在公共直流总线上,然后为并网逆变器级供电。然而,交流耦合系统(有时称为“交流电池”)正变得越来越流行,因为这种类型的 ESS 可以轻松添加到现有的太阳能装置中,而这些装置最初不包括能量存储。这是因为交流耦合 ESS 直接连接到电网。另一个优点是,这种系统可以轻松并联以提供更大的功率和存储容量。