摘要 分子动力学 (MD) 模拟对于预测不同分子体系的物理和化学性质至关重要。虽然全原子 (AA) MD 提供了高精度,但其计算成本高昂,这促使了粗粒度 MD (CGMD) 的发展。CGMD 将分子结构简化为具有代表性的微珠,以降低成本,但会牺牲精度。像 Martini3 这样的 CGMD 方法,经过实验数据校准后,在各个分子类别中具有良好的泛化能力,但往往无法满足特定领域应用的精度要求。本研究引入了一种基于贝叶斯优化的方法来优化 Martini3 拓扑结构,使其能够适应特定应用,从而确保精度和效率。优化后的 CG 势能适用于任何聚合度,提供与 AA 模拟相当的精度,同时保持与 CGMD 相当的计算速度。通过弥合效率和精度之间的差距,该方法推动了多尺度分子模拟的发展,使各个科学技术领域能够以经济高效的方式发现分子。 1. 引言粗粒度分子动力学 (CGMD) 1,2 已成为材料开发的重要工具,为了解聚合物 3 、蛋白质 4 和膜 5 等复杂分子系统提供了关键信息。CGMD 的主要优势在于它能够在更大长度尺度和更长时间范围内探索分子现象,超越了传统全原子分子动力学 (AAMD) 6–8 模拟的能力,后者通常提供更高的分辨率,因此特别擅长捕捉详细的界面相互作用 9 。具体而言,CGMD 通过将原子团有效地表示为珠子 10–15 来实现这种加速,从而将模拟能力在时间上从皮秒扩展到微秒,在空间上从纳米扩展到微米。因此,粗粒度技术为传统 AAMD 无法获得的复杂分子现象提供了前所未有的洞察,从而能够研究聚合物自组装行为等复杂现象 16 。新兴的CGMD建模工具集依赖于两个关键组件来学习潜在的分子间关系:珠子映射方案和珠子间相互作用的参数化。这些组件的开发主要采用两种方法:自上而下10–12和自下而上13–
摘要 在可穿戴植入物领域,CMOS-MEMS 谐振器在传感应用中的使用因其小型化能力而发生了革命性的变化。它们被用作射频范围内振荡器电路中的频率决定元件。感测信号通过集成在结构本身中的前端 TIA 进行放大。由于功耗低,它还提高了所用设备的耐用性。片上 TIA 集成以及 CMOS-MEMS 结构可提供紧凑的电路,还有助于放大传感器电极感测到的弱信号。LDC 的使用有助于将模拟信号转换为数字信号。由于涉及微加工技术,这些 MEMS 结构被用于各种应用,包括医疗保健中的传感器、用于定时的振荡器、用于频率选择的滤波器等。这篇综述对 CMOS-MEMS 谐振器中使用的各种 TIA 拓扑进行了深入了解。它还包括对各种研究工作的比较分析,从而深入了解未来的发展。关键词 1 CMOS-MEMS、前端 TIA、传感器、LDC、放大器、增益带宽
摘要 - 电流镜是在Mi-Croelectronics中广泛使用的电路,尤其是在模拟IC设计中。它们作为原理是输出节点处参考电流的复制品的生成。本文旨在对NMOS电流镜的不同拓扑,特别是简单的电流镜,cascode电流镜和Wilson Current Mirror进行比较研究。我们分析了它们有关晶体管的通道宽度(W)和工作温度的电气特征。Cadence Virtuoso被用作模拟工具,目标过程技术为130 nm。结果,我们发现,通过增加晶体管的W,最小输出电压会降低。此外,我们注意到三个拓扑中的温度比输出电流产生的影响。最后,可以得出结论,当前的镜子遵循了主要文献的预期模式,并朝着代表命令MOSFET晶体管的主要方程式的方向融合。索引项 - cascode电流镜,简单电流镜,Wilson Current Mirror。
• 最大磁通密度:变压器尺寸和损耗对于满足规格至关重要。对于此标准,根据施加在初级侧的最大伏秒来评估最大磁通密度 B MAX。变压器内部的磁芯损耗与此参数直接相关,因此会影响变压器的设计(几何形状、磁芯材料等)。 • 电气应力:为了管理高输入电压,功率级需要高压功率开关。某些结构可以帮助降低施加在功率开关上的电压应力。它可以减小它们的尺寸并提高它们的性能,因为在硅集成环境中,没有多少功率开关可以承受 1 kV。 • ZVS:某些拓扑结构支持 ZVS(零电压开关)操作,可以减少开关损耗,这对于高压来说非常重要。然而,这种模式需要特别注意功率级的命令。 • 复杂性:为了减小功率级尺寸,一种选择是减少所需的组件数量及其尺寸。如果变压器尺寸已经由第一个标准描述,那么开关(MOSFET、二极管)、电容器等的数量也是功率级在电路板上所占空间的指示。这些元件的值和额定电压当然会影响它们的尺寸,也可以指示将它们集成到芯片中的可能性。• 其他标准也很重要,如启动、反馈回路、稳定性方法等,但这里不予考虑。
私人投资推动了新型航空电子设备 (AS) 的开发,航空系统正面临激烈的竞争。这些新型 AS 要求下一代通信系统具有更快、更大的带宽。传统的军用 (MIL) 标准 1553 通信系统(例如 1Mbps)已无法满足激增的带宽需求。新型通信系统需要以系统架构为背景进行设计,以便与信息技术 (IT) 控制的地面网络、军事和商业有效载荷进行简单的集成。为了促进与通信架构的无缝集成,当前系统高度依赖于基于以太网的 IEEE 802.3 标准。使用标准协议可以降低成本并缩短访问时间。但是,它引入了开发人员正在积极解决的其他几个新问题。这些问题包括冗余度损失、可靠性降低和网络安全漏洞。 IEEE 802.3 以太网引入的网络安全漏洞是军事防御计划和其他航空公司最关心的问题之一。这些新通信协议的影响被量化并呈现为成本、冗余、拓扑和漏洞。这篇评论文章介绍了四种可以取代传统系统的通信协议。这些协议是
随着全球电气化和脱碳趋势的不断升温,电动汽车 (EV) 的需求也随之增长,预计复合年增长率将达到 10%。所有主要经济体都以各种形式提供各种激励措施和补贴,以加快从内燃机汽车向电动汽车的转型,例如欧盟的“Fit for 55”计划。该计划规定,到 2030 年,欧盟的排放量至少要减少 55%。根据国际能源署 (IEA) 的数据,在考虑了各国政府为推动电动汽车普及而制定的政策后,预计到 2025 年底,将有近 5000 万辆电动汽车上路行驶。
等级是根据本学期的工作质量,进步和改进,项目要求的完成,参与质量,出勤,态度和道德行为确定的。将在工作室的头几周内讨论分级策略,有关成绩或政策的任何问题都应针对讲师。课程中的及格等级要求完成所有项目,包括以适当格式的Institute档案。不完整的工作将在提交完成之前不会评估。每当累计工作,最终工作和/或出勤率都不令人满意时,就会给予失败的成绩。当学生未能提交最终项目或未经教师事先批准未能进行最终考试时,也会给出。
合成维度对研究多种类型的拓扑,量子和多体物理学产生了极大的兴趣,它们为模拟有趣的物理系统(尤其是在高维度中)提供了灵活的平台。在本文中,我们描述了一种可编程的光子设备,能够在具有任意拓扑和尺寸的晶格中模仿一类Hamiltonians的动力学。我们得出了设备物理学和感兴趣的哈密顿量之间的对应关系,并模拟了该设备的物理学,以观察到各种物理现象,包括Hall Ladder中的手性状态,有效的量规电位,以及高度晶格中的振荡。我们提出的设备为在近期实验平台中研究拓扑和多体物理学开辟了新的可能性。
拓扑优化是功能最广泛的结构优化方法之一。但是,为了换取其高水平的设计自由,典型的拓扑优化无法避免存在多个本地Optima的多模态。这项研究的重点是开发无梯度拓扑优化框架,以避免被捕获不良的本地Optima。它的核心是数据驱动的多项性拓扑设计(MFTD)方法,其中通过求解低指标拓扑优化概率生成的设计候选者通过深入的生成模型和高级授权评估进行了更新。作为其关键组件,深层生成模型将原始数据压缩为低维歧管,即潜在空间,并随机将新的设计候选者安排在整个空间上。尽管原始框架是无梯度的,但其随机性可能导致结合变异性和过早收敛性。受到进化算法的流行跨界操作(EAS)的启发,本研究合并了数据驱动的MFTD框架,并提出了一种新的交叉操作,称为潜在交叉。我们将提出的方法应用于2D结构机械的最大应力最小化问题。结果表明,潜在跨界改善了与原始数据驱动的MFTD方法相对的收敛稳定性。此外,优化的设计表现出与使用p-norm测量的常规基于梯度的拓扑优化相当或更好的性能。[doi:10.1115/1.4064979]
对可持续运输的需求导致电动汽车的迅速发展,但是电池限制了电动汽车的行驶里程和寿命。车辆中的电池由几千个电池电池组成,每个电池电池都有2-4 V左右的电压,并且在不同的模块中互连并平行,它们共同有助于电池电压和电源容量。细胞制造和其他因素的变化意味着单个细胞电压和细胞之间的分布百分比在操作过程中可能会有所不同。每个单元具有最低和最高的电压限制集,必须保留这些限制,以使电池不被破坏。由于细胞间的变化,某些单元格的速度比其他细胞更快,这限制了电池的性能。因此,需要单个单元控制,以最大程度地利用电池提供的能量。电动汽车的常规推进系统具有电池,可为用于推进的电机提供能量。电池与直流电流一起工作,而车辆中的电动机则由交替电流提供动力,这意味着需要电源转换器,可以将DC从电池转换为电动机的交替电流。这样的功率电子转换器用于将直流电流转换为交替电流,称为逆变器,而这些转换器又使用半导体开关来创建交替的电流。通过在倒置中控制半导体“ ON”和“ AV” - period来控制Ethlete之外的,以便输出接收交替的电流。,以便输出接收交替的电流。这些过渡在“ on”和“ by”之间交替的速度称为开关频率。在常规动力总成中,通常使用一个逆变器,可与两个级别一起使用,因此具有两个级别的外科医生,这些逆变器具有很高的总和和谐失真,并且需要在出口(交流侧)的过滤器。总和和谐失真是波形与纯窦波的偏差。总和和谐失真越高,电机中的损耗越大。为了减少这些问题,建议使用抗战斗的模块化级别转换器(来自英语电池集成模块多级转换器的BI-MMC)提出,提出和评估。在BI-MMC中,电池组中的较小的电池模块链接到逆变器,然后成为称为子模块的单元。以及常规电池组中的电池模块,可以将这些订阅组合在一起并平行,以使它们可以直接交流电流直接传递到电气机。BI-MMC因此具有增加的可控性,并可以改善电池组的寿命。此外,BI-MMC在结果中的总和和谐失真较低,这进一步改善了动力总成的影响。论文中的第一个贡献是分析和评估三相和六阶段BI-MMC的不同拓扑。作为比较的基础,常规的两级逆变器用于40吨400千瓦的卡车。评估表明,大多数BI-MMC的损失低于常规的两级逆变器。第二个贡献是对每个串联细胞的数量如何影响