环形石墨烯(TG)代表了一类新的碳纳米结构,将曲率驱动的场限制与量子增强电荷相干性集成在一起。与常规的基于碳的增强剂不同,TG表现出源自无折叠的实验和理论证据链的3×10 9的电磁场扩增因子(AF)。曲率诱导的定位和等离子体杂交理论(PHT)的协同作用使van der waals(VDW)在青铜基质中的膨胀从0.4 nm到577 nm,从而使超高的TG浓度仅为0.005 wt%,以驱动机械性能的转化增强。将其纳入无铅铜制时,TG将耐磨性提高458%,并使CO₂排放量减少78.2%,从而提供了史无前例的性能和可持续性组合。这些作用源于量子等离子体加固机制,这些机制改善了纳米级的应力转移,负载分布和分子内聚力。与常规合金元素(例如PB或Ni)不同,依赖于散装物质特性的PB或Ni,TG从根本上改变了通过纳米级力重新分布来改变耐药性。这项研究将TG确立为下一代金属纳米复合材料的破坏性材料,将基本纳米科学与与行业相关的摩擦学验证合并。与全球第八大卡车制造商Scania合作进行,该验证证实了其直接的工业相关性,证明了现实世界中的适用性在高性能耐磨应用中。连接电磁场放大,VDW扩展和摩擦学验证的明确证据链支持TG的量子工程增强功能,将其定位为高级制造和重型产业的基石。
1977 年至 1990 年,Walden 与墨西哥飞艇制造公司 SPACIAL S.A. 的创始人 Mario Sánchez-Roldan 合作,设计和开发了一系列采用透镜状刚性测地线空间框架船体的飞艇。合作成果包括小尺寸 XEM-4 刚性透镜状飞艇演示器和全尺寸 SPACIAL MLA-32-B,后者于 1989 年 6 月首次飞行,成为 50 年来第一艘现代载人刚性飞艇。此次合作还验证了 Walden 的测地线船体设计规范,该规范用于 LTAS 飞艇设计。1997 年,该公司获得了第一批投资者,公司名称更改为 LTAS / CAMBOT LLC,以反映他们开发远程控制高空平台 (HAP)(称为 CAMBOT)的计划。Robert Ellingwood 成为该公司的总裁。2003 年,该公司更名为 LTAS Holdings LLC 和 LTAS International LLC (LTASI)。LTAS Holdings 是 Michael Walden 专利的受让人,并授权使用该知识产权 (IP)。LTASI 是 IP 应用的被许可人。此外,2003 年,一群外国投资者提供资金开发和建造大型 DCB 原型飞艇,最初打算将其作为 30-XB / 技术演示器,并被简单地指定为 TD1,后来被指定为 TD2。Michael Walden 于 2005 年离开 LTAS Holdings 和 LTASI。当时,LTAS 公司计划开发基于 TD2 设计的 New Frontier DCB 飞艇系列。这些公司于
作为图像处理的一种重要方法,图像差异可以使目标的边缘检测能够实现对象特征和信息压缩的识别,并且可以通过光学信息技术来提高计算速度。传统的光学图像差异方法主要依赖于使用经典4F系统的空间光谱过滤,而某些工作则集中在1D或单向之间。直到近年来,跨境的快速发展才促进了图像不同的方法。在这项工作中,基于硅空心砖电介质谐振元脉冲的发射光场演示了拉普拉斯操作设备。可以通过刺激元图支持的角度选择性的环形偶极子(TD)共振来获得光拉拉普拉斯操作所需的光传递函数(OTF)。这个空心的硅砖块不仅实现2D二阶检测,而且具有接近0.4的数值光圈,并且可以直接集成成像系统,并且可以直接集成。此类MetadeVice可能可能应用于光学传感,显微镜,机器视觉,生物医学成像等的领域。
1 加拿大国家研究委员会航空航天研究中心;加拿大渥太华 2 aiRadar Inc.,www.airadar.com;加拿大温哥华 3 卡尔顿大学系统与计算机工程系;加拿大渥太华 4 加拿大国防研究与发展局,国防部;加拿大渥太华
Sophie Cambronero,AurélienDupré,Charles Mastier,David Melodelima。在体内猪模型中对肝组织的非侵入性高强度的超声处理:使用环形传感器快速,大而安全的消融。医学与生物学超声波,2023,49(1),pp.212-224。10.1016/j.ultrasmedbio.2022.08.015。hal-04745052
环形电磁脉冲最近据报道是无横向时空无可分割的自由空间拓扑激发。但是,他们的传播动力学和拓扑结构尚未经过全面的实验表征。此外,现有发电机的光学和Terahertz域受到限制。但是,在微波频率下产生此类脉冲的可行性和意义已被忽略。在这里,我们报告说,微波螺旋脉冲可以通过瞬态有限孔宽带喇叭天线发射器发射,作为“空气涡流大炮的电磁对应物。” Applying this effective generator, we experimen- tally map the toroidal pulses ' topological skyrmionic textures in free space and demonstrate their resilient propagation dynamics, i.e., how that, during propagation, the pulses evolve toward stronger space-time nonseparability and closer proximity to the canonical Hellwarth – Nouchi toroidal pulses.我们的工作提供了一个实用的机会,可以使用拓扑稳健的环形脉冲作为高容量电信,手机技术,遥感和全球定位的信息载体,尤其是在微波频率占主导地位的情况下。
摘要 - 这篇文章研究了峰值电场强度(PEFIS)和允许的最大激发电压(MEVA)电感链路无线电源传递(WPT)到嵌入人体中的医疗植入物中。在环形,六边形和圆形的几何形状中的分段和未段的天线,宽度为2、1和0.2 mm。广泛的模拟表明,与未分段的天线相比,分割的天线可以显着减少PEFI并增加特定吸收率(SAR)约束内的MEVA。通过分割,PEFI的降低在更高的工作频率下更有效。宽度较小的天线将辐射较小的PEFI。具有相同的天线宽度,六边形天线辐射最大的PEFI,其后是其圆形和环形的对应物。在研究下的所有天线中,宽度为2 mm的未段的六角形天线辐射为最大的PEFI,而宽度为0.2 mm的分段环形天线辐射最小的PEFI。考虑到PEFI和MEVA,首选环形几何形状中的天线,并且应将分割应用于六边形天线。当天线宽度大于1 mm时,建议天线的分割。
是ri 位置处的局域磁矩。经典的环面磁矩可以通过沿子午线在环面表面流动的电流实现[4],如图1a所示。此外,它通常也可以在具有独特轮状拓扑结构的单分子基化合物中观察到,[5]例如 Dy 6 轮子,[6,7] Dy 4 正方形,[8] 和 Dy 3 三角形,[9]分别如图 1b-d 所示。在晶体固体系统中,环面磁矩的自发环面化,即铁环序,由于其新颖的不对称性质和潜在的应用而受到越来越多的关注。 [2–5,10–15] 已经提出了几种铁环候选物,[3,15] 例如具有橄榄石结构的正磷酸盐 LiCoPO 4 [10] 和辉石结构类型的 LiFeSi 2 O 6 [16]。LiCoPO 4 是