本文引入了一种安全增强的混合图像加密方法,该方法采用了带环形涡旋相掩码(TVPMS)和QR分解,并带有Gyrator Transform。使用的TVPM是通过将径向希尔伯特变换(RHT)和环形区板(TZP)相结合而产生的错综复杂的相掩码。QR分解是一种数学操作,用于矩阵分解,可作为常规相截断的傅立叶变换(PTFT)方法的替代。加密系统表现出不对称性,鉴于加密和解密过程与依赖不同的安全密钥集不同。在解码系统中使用加密过程中产生的密钥来检索输入图像。系统性能通过评估均方误差,峰值信噪比,钥匙灵敏度,作物效应,相关系数,3-D网格,直方图和噪声攻击来测试。©Anita出版物。保留所有权利。
本文讨论了超导绕组储能的可能性。介绍了超导磁能存储技术的里程碑,并描述了世界上设计的装置的发展历程。本文介绍了高温超导绕组的可能配置,特别强调了螺线管和环形配置以及装置的工作原理。作为该装置的示例,讨论了在13 K时能量为34 kJ的波兰超导磁能存储物理模型的设计和研究结果。讨论了利用螺线管和环形配置中绕组的几何参数控制能量值和磁场分布的可能性。对波兰超导磁能存储模型设计的研究表明,可以增加超导磁能存储绕组中存储的能量。通过选择适当的具有磁屏蔽的绕组配置,可以将装置外部的强磁场限制在标准允许的范围内。最后列出了超导磁储能在电网中的可能用途。
§通过各种隔离,接地和过滤体系结构进行迭代导致制造紧凑,轻巧,低通的T滤波器,这将使电池监视电路在没有内部修改的电动机控制器硬件或软件的情况下进行操作。§飞机上相邻电路上的其他关键EMI需要对相邻电路进行有条理的测试,将电动机和控制器机箱电气隔离,以及在巡航Nacelle中的多个电缆线束上添加环形窒息。
摘要:本文研制了一种手掌大小的激光光谱仪,该光谱仪基于可调谐二极管激光吸收光谱 (TDLAS) 和新型双层环形电池,用于检测痕量气体。得益于自制电子系统和紧凑光学设计,传感器的物理尺寸最小化为 24×15×16 cm 3 。环形吸收电池分为 2 层,共有 84 个反射,有效光程长度为 8.35 m,用于增强气体的吸收信号。设计了自制电子系统,用于实现分布式反馈 (DFB) 二极管激光控制器、模拟锁相放大器、数据采集和通信。采用免校准扫描波长调制光谱法来确定气体浓度,并减少电子噪声和机械振动引起的随机波动。使用 1.653 μm 的 DFB 激光器演示了对环境空气中 CH 4 的测量。混合气体更新的上升时间和下降时间分别约为16 s和14 s。为验证光谱仪的性能,进行了振动和温度试验,在不同振动频率和温度下对20 ppm CH 4 测定的标准偏差分别为0.38 ppm和0.11 ppm。根据Allan偏差分析,在积分时间为57.8 s时,CH 4 的最低检测限可达22 ppb。
cli虫QCAS。QCA是经历离散时间演变的晶格系统。每个都由两件事确定:每个晶格站点上的局部希尔伯特空间和统一的时间进化操作员(或自动化)。在海森伯格图片中,我们可能会将后者写为一组可逆的“规则” [28],用于每个站点上的本地操作员的发展。我们考虑了一种称为Cli效率量子蜂窝自动机的特定模型系统[38 - 40]。这些QCA生活在空间中有限的1D晶格上,并遵守翻译不变性。每个晶格位点的希尔伯特空间源于量化环形相空间,因此每个lo-cal Hilbert空间都是有效的[41]。我们将此维度表示为n。此外,普朗克常数尺度为1 /n [40],因此n→∞是半经典的极限。作用于每个当地希尔伯特空间的操作员建立了Q,p:
光学上的阿波尔是具有强烈抑制电磁辐射的特征的有趣的电荷传播分布。它们源于电和环形多物产生的辐射的破坏性干扰。尽管已经与近距离和远端光学技术的组合探测并绘制了介电结构中的Anapoles,但到目前为止尚未探索它们使用快速电子束的激发。在这里,我们从理论和实验上分析了使用电子能量损失光谱(EEL)在扫描透射电子显微镜(STEM)中使用电子能损失光谱(EEL)的钨(WS 2)纳米风险中光学旋转的激发。我们观察到电子能量损失光谱中的显着倾角,并将它们与光学anapoles和Anapole-Exciton杂种相关联。我们能够绘制以下分辨率的WS 2纳米风险中激发的Anapoles,并发现可以通过将电子束放置在纳米台面的不同位置来控制它们的激发。考虑到有关Anapole现象的当前研究,我们设想STEM中的鳗鱼成为访问各种介电纳米孔子中出现的光学静脉的有用工具。
我们报告了通过连续硼(b)粉末注射启用的实验高级超导tokamak(EAST)中对边缘区域模式(ELMS)的强烈抑制。边缘谐波振荡在B粉末注入过程中出现,提供足够的颗粒传输以保持恒定密度并避免在ELM稳定的等离子体中积累杂质。准稳态的ELM抑制放电以适度的能量限制改善和在广泛的条件下:加热能力和技术变化,〜3.5元素的电子密度范围,氘或氦离子物种,以及带圆环磁场的任何方向。ELM抑制在阈值边缘B强度以上,并在B注射终止的0.5 s内停止。与ELM抑制作用相反,伴随着NSTX和EAST的LI粉末注射期间的回收减少[R. Maingi等人,Nucl。融合58(2018)024003],由于保留氢而导致的回收减少是不需要用B粉注射的ELM抑制的,为将其作为未来融合设备的ELM控制工具铺平了道路。关键字
摘要 - 超导离子龙门(SIG)项目旨在设计,构建和测试一个离子龙门的弯曲的超导偶极示威磁体(刚度为6.6 Tm)。主示威者磁铁参数是一个4 t的偶极场,该偶尔线生成的圆环孔,直径为80 mm,曲率半径为1.65 m和30°角扇形。该项目插入了CNAO,CERN,INFN和Medaustron之间的Eurosig合作框架中。在这次合作中,SIG的主要目标是对绕线和组装cos-θ线圈的可行性研究,其曲率半径较小。此外,通过构建直接的热示威磁体共享SIG横截面,CERN的平行程序专门用于研究间接冷却问题。这些程序背后的基本思想是检查社区在超导加速器磁铁设计方面的丰富经验是否会导致龙门磁铁域的突破。本文介绍了SIG磁铁概念设计的主要要素,并报告了米兰的Lasa实验室进行的第一次绕组试验,并带有铜虚拟电缆。此外,还讨论了高度弯曲的cosθ线圈的绕,固化和浸渍的可能解决方案。
经典的霍金宇宙奇点定理 [ 10 ,第 272 页] 证明了空间封闭时空在未来某个阶段会膨胀时存在过去类时间测地线不完备性。该奇点定理要求时空的 Ricci 张量满足强能量条件,即对所有类时间矢量 X ,Ric ( X , X ) ≥ 0。在遵循爱因斯坦方程且具有正宇宙常数 > 0 的时空中,通常不满足此能量条件,因此该结论不一定成立;测地线完备的德西特空间就是一个直接的例子。但这不仅仅是真空时空的特征;具有正宇宙常数的充满尘埃的 FLRW 时空提供了其他例子。对于 [8,第 3 节] 中讨论的 FLRW 模型,共动柯西曲面被假定为紧致的,并且除了时间相关的尺度因子外,曲率均为常数 k = + 1 , 0 , − 1。这三种情况在拓扑上截然不同。例如,在 k = + 1(球面空间)的情况下,柯西曲面具有有限基本群,而在 k = 0 , − 1(环形和双曲 3 流形)的情况下,基本群是无限的。此外,只有在 k = + 1 的情况下,过去大爆炸奇点才可以避免。