钛基储氢合金具有较高的吸氢能力、较低的放氢温度以及丰富的资源,是最常见的固态储氢材料之一。本文主要介绍了钛基储氢合金的几种不同制备方法对储氢性能的影响,包括传统制备方法(冶炼、快淬和机械合金化)和新方法(冷轧、等通道转角压制和高压扭转)。对上述制备工艺对应的钛基合金的组织分析和储氢性能进行了较为深入的总结。研究发现,通过强塑性变形(SPD)引入少量的位错、晶界、亚晶界和裂纹等晶格缺陷,有利于改善合金的吸/放氢动力学特性,但SPD可能引起合金成分不均匀和残余应力增加,不利于储氢能力的提高。未来有望将掺杂、改性等新方法、新技术应用于钛基储氢合金,以期在实际应用方面取得突破。
摘要:本研究旨在实现超细晶粒 (UFG) Al 2024 合金在低于传统商用铝合金 (400-500 ◦ C) 温度下的超塑性。室温下通过高压扭转在合金中产生的 UFG 结构平均晶粒尺寸为 100 nm,具有非常高的强度 - 显微硬度 (HV 0.1) 为 286 ± 4,偏移屈服强度 (σ 0.2) 为 828 ± 9 MPa,极限拉伸强度 (σUTS) 为 871 ± 6 MPa,断裂伸长率 (δ) 为 7 ± 0.2%。在温度为 190 至 270 ◦ C、应变速率为 10 − 2 至 5 × 10 − 5 s − 1 的情况下进行了复杂的拉伸试验,并确定了流变应力、总伸长率和应变速率敏感系数的值。结果表明,UFG 合金在 240 和 270 ◦ C 的试验温度下表现出超塑性行为。首次在 270 ◦ C(0.56 T m )的异常低温和 10 − 3 s − 1 的应变速率下实现了 400% 的伸长率。超塑性变形后的 UFG 2024 合金具有比标准强化热处理 T6 后的强度(150–160 HV)更高的强度。
自从DNA双螺旋结构被发现以来,基因组研究的范围不断扩大,我们对基因组的认识也得到了极大的进步;与此同时,许多模式生物的全基因组测序已经完成,而基因组编辑技术也正在迅速普及。过去的基因组研究主要集中在基因组信息的复制、修复、重组、分裂等信息层面,并进一步强调表观遗传调控来解释遗传现象。另一方面,DNA的物理性质,如硬度、扭转、超螺旋等,虽然是直接影响基因组结构的重要性质,但人们对其了解甚少。在本项目中,我们将重点研究基因组/DNA的物理性质,以了解基因组如何构建其结构以及如何发挥作用。我们将“基因组模态”定义为组织基因组结构和功能的多维模式。我们将从基因组模态的角度揭示基因组的真实面貌。为此,我们运用生物化学、细胞生物学、基因组科学、高分子物理学等方法,开辟了研究“基因组形态”的新领域。【研究项目内容】
试卷 I - 力学与波动 第一单元 惯性参考系、牛顿运动定律、直线和圆周运动中粒子的动力学、保守力和非保守力、能量守恒、线性动量和角动量、一维和二维碰撞、横截面。 第二单元 简单物体的转动能量和转动惯量、刚体在水平和倾斜平面上的平动、转动和运动的综合、陀螺运动的简单处理。弹性常数之间的关系、梁的弯曲和圆柱体的扭转。 第三单元 中心力、两粒子中心力问题、减小质量、相对和质心运动、万有引力定律、开普勒定律、行星和卫星的运动、地球静止卫星。 第四单元 简谐运动、SHM 的微分方程及其解、复数符号的使用、阻尼和强迫振动、简谐运动的合成。波动的微分方程、流体介质中的平面行进波、波的反射、反射时的相变、叠加、驻波、压力和能量分布、相速度和群速度。
电弧增材制造 (WAAM),也称为定向能量沉积 (DED) 工艺,是一种高效的增材制造技术,具有逐层快速制造具有复杂几何形状的大型部件的巨大潜力。然而,在将这种独特的技术应用于关键应用之前,需要在各个层面上显著提高对此类部件疲劳行为和材料要求的基本理解。这项工作旨在研究 WAAM 制造的 ER70S-6 钢在单轴、扭转和多轴载荷条件下的疲劳行为。以两个不同的方向提取样本:垂直和水平,以探索方向是否对疲劳结果有任何影响。进行扫描电子显微镜 (SEM) 检查断裂样品的断裂表面并确定裂纹起始区域和断裂机制。将获得的结果与文献中关于使用传统焊接和 WAAM 技术制造的常见结构钢的疲劳数据进行了比较,结果显示与锻造 S355 样品具有相似的疲劳行为。此外,根据 DNV RP-C203 连续焊缝标准对 ER70S-6 WAAM 试样的单轴数据集进行了评估,结果证明所检查材料具有良好的抗疲劳性能。
OHB Italia 设计、制造并认证了一种用于太空望远镜的新型盖门组装机制 (CDAM)。CDAM 的主要目的是保护仪器免受阳光照射。此外,它可以限制 AIT 和存储阶段的灰尘颗粒污染。该系统由四个主要子组件组成:压紧和释放机制 (HDRM)、致动系统、盖门和应急系统。HDRM 基于三个分离螺母致动器,需要预加载锥形可分离 I/F 上的球体。另一方面,致动系统配备了带有冗余绕组的步进齿轮马达。齿轮马达将直径为 1 米的盖门旋转 270 度。如果齿轮马达发生故障,应急系统会将致动器与盖门分离。同时,该系统会强制打开盖门。它基于高输出石蜡致动器 (HOPA)。当 HOPA 启动时,它会脱离齿轮马达并接合预载扭力弹簧。弹簧对盖门施加扭矩,使其永久打开。在此阶段,扭矩应用由擒纵机构控制。本文介绍了 CDAM 设计以及环境测试活动的结果。特别关注了在机制集成和测试过程中获得的经验教训。简介
传统的人工除草是整个农作物生产周期中繁琐且昂贵的操作之一,原因是劳动力成本高、耗时且乏味。除草剂的使用除了其他令人担忧的缺点外,还造成了环境污染。对无毒食品的需求不断增加,已成为除草的挑战。因此,机械除草变得越来越重要。农业自动化也提高了除草管理的机械化投入。传感器、微控制器和计算技术在田间的快速应用为农业自主指导系统奠定了基础。自动化系统对田间作业具有时间效率,避免了巨大的劳动力需求和健康繁琐问题,从而实现了高效的农场运营。农民通常使用手动工具(如 khurpi(手动小锄头)、挖沟机、铁锹、轮锄、推拉式除草机)来清除行间和行内杂草,除草效率较高,在 72% 至 99% 之间,但田间持水量很低,在 0.001 至 0.033 公顷/小时之间。本篇评论讨论了机械除草方面的最新研究成果,例如拖拉机操作的指式除草机、扭力除草机、ECO 除草机、火焰除草机、耙子和基于传感器的技术,用于管理行距较宽的作物的行间和行内杂草。
女性健康 临床轮转主题 泌尿生殖系统(女性) 膀胱疾病:尿失禁、膀胱过度活动症、脱垂 膀胱输尿管反流 感染性疾病:膀胱炎、肾盂肾炎、尿道炎 肿瘤:膀胱癌 肾结石/尿路结石 尿道疾病:脱垂、狭窄 生殖系统 乳腺疾病:脓肿、纤维腺瘤、纤维囊性变、溢乳、男性乳房发育、乳腺炎 宫颈疾病:宫颈炎、发育不良 避孕方法 人类性行为和性别认同 不孕症 更年期 月经失调 乳腺和生殖道肿瘤:良性、恶性 卵巢疾病:囊肿、多囊卵巢综合征、扭转 盆腔炎 妊娠:胎盘早剥、臀位、宫颈机能不全、剖宫产和手术分娩、流产分类、宫外孕、妊娠期糖尿病、妊娠期滋养细胞疾病、妊娠期高血压疾病、分娩、多胎妊娠、前置胎盘、产后护理、产后出血、产后垂体疾病、产后精神病、孕前/产前护理、胎膜早破、Rh 血型不合、肩难产、脐带脱垂 妊娠期创伤:身体创伤、心理创伤、性创伤 子宫疾病:子宫内膜异位症、平滑肌瘤、脱垂 阴道/外阴疾病:巴氏腺囊肿、膀胱膨出、脱垂、直肠膨出、阴道炎
摘要 目的 除矢状线对齐外,还强调了横平面参数 (TPP) 和旋转半脱位对患者报告结果的影响。退行性脊柱侧弯成因的假设之一是椎间盘退化,伴有轴向椎体 (AVR) 和椎间旋转 (AIR) 增加。因此,脊柱侧弯早期的 TPP 分析似乎特别令人感兴趣。本研究旨在评估成人脊柱畸形 (ASD) 患者三维 (3D) 重建的可靠性。方法 30 名 ASD 患者接受双平面 X 线检查,并分为两组(Cobb 角 [ 30 � 或 \ 30 � )。测量脊柱参数和 TPP(顶端 AVR、主曲线上部和下部的 AIR)。四位操作员进行了两次 3D 重建。使用 ISO 标准 5725-2 分析观察者内和观察者之间的可靠性,以量化可重复性的全局标准偏差 ( S R )。结果平均 Cobb 角为 31 �,平均年龄 55 岁(70% 为女性)。顶端 AVR、上部和下部 AIR 的平均值分别为 16 � ± 15 �、6 � ± 6 � 和 5 � ± 5 �。脊柱骨盆参数 S R 低于 4.5 �。对于 Cobb 角 \ 30 � ,AVR 顶点、扭转指数、上部和下部的 S R 分别为 7.8 �、9.6 �、4.5 � 和 4.9 �
• 基本设计概念:极限载荷、极限载荷、安全系数、安全裕度 • 飞机载荷:惯性载荷、载荷系数;设计练习 • 金属:产品形式、物理和机械性能、失效模式、设计允许值;热机械加工 • 纤维增强层压复合材料:产品形式、物理和机械性能;失效模式;设计允许值;加工 • 材料选择:铝、钛、钢、复合材料和新兴结构材料; • 静态强度设计:高载荷拉伸结构;组合载荷;设计练习 • 机械接头:螺栓和铆钉;粘合和焊接接头;凸耳和配件;设计练习 • 薄壁结构:紧凑梁的弯曲和扭转回顾 • 薄壁结构:薄壁梁剪切流分析简介 • 半张力现场梁;设计练习; • 有限元方法简介 • 屈曲和刚度要求设计:薄壁和组合结构的屈曲 • 部件设计:机翼和尾翼、机身、起落架、附件 • 损伤容限设计:结构裂纹扩展;断裂力学简介;临界裂纹长度;分析练习;大面积疲劳损伤;检查安排 • 耐久性设计:疲劳;分析练习;腐蚀 • 认证:分析和验证要求、部件和飞机测试要求