I 型毒素-抗毒素 (TA) 系统通常由嵌入内膜的蛋白质毒素和直接与毒素 mRNA 相互作用以抑制其翻译的 RNA 抗毒素组成。在大肠杆菌中,symE/symR 被注释为具有非典型毒素的 I 型 TA 系统。SymE 最初被认为是一种内切核糖核酸酶,但预测其结构与 DNA 结合蛋白相似。为了更好地了解 SymE 的功能,我们使用 RNA-seq 检查异位产生它的细胞。尽管 SymE 会驱动基因表达的重大变化,但我们没有发现内切核糖核酸酶活性的有力证据。相反,我们的生化和细胞生物学研究表明 SymE 会结合 DNA。我们证明 symE 过表达的毒性可能源于其能够驱动严重的类核缩合,从而破坏 DNA 和 RNA 合成并导致 DNA 损伤,类似于过量产生类核相关蛋白 H-NS 的影响。总之,我们的结果表明 SymE 代表了一类广泛分布于细菌中的新型类核相关蛋白。
因子:一种因素,如微生物、化学物质或辐射形式,其存在、过量存在或(在缺乏疾病中)相对缺失对于疾病的发生至关重要。厌氧菌:在缺氧条件下生长最好的生物。专性厌氧菌只能在缺氧条件下生长。分析流行病学:流行病学中寻找与健康相关的原因和影响的方面。使用提供基线数据的比较组来量化暴露与结果之间的关联,并检验有关因果关系的假设。分析研究:旨在识别和量化关联、检验假设和识别原因的比较研究。两种常见类型是队列研究和病例对照研究。抗毒素:含有针对特定毒素的抗体并中和毒素作用的药物。注射抗毒素并不总能使患者完全康复,因为抗毒素(如肉毒杆菌抗毒素)可能只与循环毒素结合,而不与已经与组织结合的毒素结合。 关联:两个或多个事件、特征或其他变量之间的统计关系。 发病率:发病率的一种变体,适用于在有限时间内观察到的狭义人群,例如在流行病期间。 B 条形图:变量不同类别大小的直观显示。变量的每个类别或值都用一个条形表示。 偏差:结果或推论与事实的偏差,或导致此类系统偏差的过程。数据收集、分析、解释、发布或审查过程中的任何趋势都可能导致得出与事实有系统差异的结论。 生物传播:传染源的间接媒介传播,其中病原体在传播给新宿主之前在媒介内发生生物学变化。沸腾:沸腾发生在 100 C(或 212 F)。C 携带者:没有明显疾病的人或动物,但携带特定传染源并能够将传染源传播给他人。携带者状态可能发生在
致编辑:如果被问到这个问题,许多科学家可能会同意“自然感染比接种疫苗更能产生免疫力”这一说法。事实上,如果一个人在感染后幸存下来,那么肯定有许多病原体通过自然感染会比接种疫苗产生更强的免疫反应和更持久的免疫力。麻疹就是这种现象的典型 1 。虽然在疫苗出现之前,感染后有明显的死亡、脑炎和肺炎风险,但幸存者获得了终身免疫力。另一方面,麻疹疫苗需要注射两次,可能无法提供终身完全保护,但事实证明,如果广泛实施,足以控制疾病。与麻疹病毒相比,有许多病原体通过接种疫苗产生比自然感染更强的免疫反应和更有效的疾病保护。在这些情况下,人造疫苗是“超人”的;也就是说,它给人类的免疫反应优于对感染的反应。导致破伤风的细菌就是一个显著的例子。感染这种病原体会导致产生少量的强效破伤风毒素,这些毒素足以引起严重疾病,但不足以产生强烈的免疫反应,特别是抗体反应。另一方面,接种灭活形式的毒素(破伤风类毒素)可产生足够的抗体反应,提供十年甚至更长时间的毒素保护 2 。因此,即使是那些感染了破伤风细菌并出现临床症状的人,以及那些只是潜在接触过的人,也建议接种疫苗。细菌世界的另一个例子是乙型流感嗜血杆菌 (Hib)。Hib 可导致多种严重疾病,包括脑膜炎、肺炎和败血症。细菌表面有一层糖涂层保护,这通常会诱发相当差的抗体反应。然而,通过将糖与疫苗制剂中的蛋白质连接起来,可以大大增强抗体反应
Current trends in Pharma and Pharmaceutical sciences • www.medcavepublications.org • European journal of biomedical research https://www.ejbmr.com Reviewer of International Journals Trends in Cell Biology, Elsevier Biochimie, Elsevier Arabian Journal of Chemistry, Elsevier Food Bioscience, Elsevier Journal of Ethnopharmacology, Elsevier Heliyon, Elsevier Food and Humanity, Elsevier Microbial Pathogenesis, Elsevier Scientia Horticulturae, Elsevier Saudi Pharmaceutical Journal, Elsevier Journal of Pharmaceutical Analysis, Elsevier Evidence-Based Complementary and Alternative Medicine, Hindawi Food Science and Nutrition, Wiley BioFactors, Wiley Toxin Reviews, Taylor and Francis Critical Reviews in Food Science and Nutrition,泰勒(Taylor)和弗朗西斯(Francis)应用生物化学和生物技术,人类新闻媒体发现植物,施普林格自然癌细胞国际,施普林格大自然naunyn-schmiedeberg的药理学档案,施普林格大自然医学肿瘤学,Springer Nature discution肿瘤学,Springer Nature
自保罗·埃里希(Paul Ehrlich)描述抗体20的特性时,已经提出了“魔力” 20的概念已有100多年了。然而,直到1975年,在1975年杂交瘤技术开发后,治疗潜在的抗体才开始解锁,这使科学家和临床医生能够按需开发和分离大量特定的克隆抗体21。从那时起,单克隆抗体逐渐进入了从事靶向癌症免疫疗法的临床医生的武器库。迄今为止,已经开发了和测试了几种抗体,现在通常在诊所中使用。可以设计抗体,以特异性结合目标肿瘤细胞上存在的抗原,同时保留健康的组织,然后通过多种机制攻击它们。一种机制之一是使用细胞毒性药物(毒素)诱导靶细胞的细胞死亡。抗体与细胞毒性药物(毒素)偶联以形成ADC(抗体药物结合物)。与在肿瘤细胞表面表达的抗原结合后,ADC被内化,并将细胞毒性药物直接释放到胞质溶胶中,从而导致细胞死亡(图1)。这种策略允许在保留其他原本邪恶的副作用的健康组织的同时优先杀死肿瘤细胞。
Buruli溃疡(BU)疾病是由分枝杆菌引起的被忽视的坏死性皮肤感染,是仅次于结核病和麻风病的第三种最常见的分枝杆菌疾病。感染主要发生在中非和西非的偏远,农村地区,也出现在澳大利亚,日本和巴布亚新几内亚。目前尚无针对Buruli溃疡疾病的疫苗,并且以前使用密切相关的细菌和亚基蛋白的所有尝试仅在部分成功。在这里,我们在小鼠中测试了一种复合亚基配方,该配方掺入了溃疡性分枝杆菌毒素霉菌乳元作为免疫调节剂,以及抗原AG85A和Polyketide Sythase酶酶A(KRA),用Quil-A辅助(KRA)形成。burulivac诱导了AG85A和KRA抗原特异性抗体,T细胞以及混合促疾病和抗炎的细胞因子反应,在14周的观察期间,在小鼠FOOTPAD模型中赋予了针对Buruli ulcer病的绝对保护。这两个都优于活体细菌疫苗,即BCG和缺乏霉菌性毒素(MUδ)的无毒的溃疡菌株。白介素10与保护密切相关。我们建议Burulivac是一名有前途的疫苗候选者,以抵抗Buruli溃疡疾病,需要进一步探索。
摘要简介:坏死性肠炎(NE)是鸟类胃肠道的感染,由于其巨大的经济损失,是家禽行业的主要关注点。该疾病是由革兰氏阳性细菌性裂孔(C. perfringens)引起的。由于禽类行业禁止使用抗生素使用情况,近年来,NE的发病率大大增加。我们先前已经表明,用亚基嵌合抗原免疫由NE发病机理(α毒素,B样毒素(NETB)和锌金属肽酶(ZMP))组成的最有效的共环蛋白毒素(alpha毒素,B样毒素)组成。材料和方法:在本研究中,鸡被重组蛋白皮下免疫。然后,评估了免疫鸟类中细胞因子的表达谱。为此目的,遵循免疫方案,从鸟类的肠道中取出样品,提取mRNA,并使用定量实时PCR研究了四种不同的细胞因子(IFN-γ,IL-4,IL-17和IL-22)的表达。上述细胞因子是辅助T淋巴细胞的代表,并且在几种免疫系统活性中具有作用,例如细胞,体液和粘膜免疫反应以及炎症。结果:根据细胞因子测定的结果,皮下注射的重组蛋白会引起体液和细胞免疫系统,但无法刺激粘膜免疫系统。J Appl BiotechnolRep。2024; 11(1):1229-1235。 doi:10.30491/jabr.2023.388739.1613候选疫苗引起了免疫系统,因此辅助重组蛋白(AXJ-RNAM组)和对照组之间的差异显着(P <0.001)。结论:除了我们先前的研究输出外,结果表明,我们的策略在完成适当的研究后可以为使用NE治疗中使用抗生素提供替代解决方案。关键字:候选疫苗,坏死肠炎,灌注梭菌,细胞因子测定,细胞免疫引用:Al-Aneed B,Masoudi AA,Katalani C,Ahmadian G,Hajizade A,Hajizade A,Razmyar J.评估IFN-γ,IL-4,IL-17和IL-22细胞因子在用含有α毒素,NETB和ZMP的重组嵌合疫苗免疫的鸟类中的表达。
引言致病性T细胞引起许多疾病,包括大多数自身免疫性疾病和移植物与宿主疾病(GVHD)(1)。在保留正常T细胞和其他组织的同时选择性地靶向这些致病性T细胞是现代医学中治疗性开发的圣杯。到目前为止,泛免疫抑制药物(例如皮质类固醇)用于控制T细胞相关的炎症条件,临床功效不令人满意和许多严重的不良反应(2)。可以很好地确定,一旦被自动或同种抗原激活的致病性T细胞开始迅速生命,从而导致组织损伤,而其他正常T细胞保持静止。单独离开静态T细胞的同时选择性地靶向生命的T细胞,将是开发新药的有效策略,用于致病性T细胞介导的疾病。有丝分裂毒素选择性地杀死主动分裂细胞,并已成功地用于治疗癌症,因为肿瘤细胞通常会积极生长(3)。由于正常的组织细胞(如毛囊和肠上皮细胞)在生理条件下也会增殖,因此这些正常细胞也受到影响,在这些化学疗法中常见的不良反应中表现出来(4,5)。为了有选择地消除致病性增殖T细胞,需要将化学治疗性有丝分裂毒素直接递送到T细胞中。抗体 - 药物结合物(ADC)正在成为有前途的癌症治疗。这些癌细胞和致病性T细胞具有一个共同的特征 - 两者都在积极增殖。通过将有效的毒素结合到针对癌细胞表面抗原特异性的单克隆抗体(MAB)上而开发,该毒素在与表面抗原结合后,通过MAB选择性地输送到靶癌细胞中,并被内化地化为癌细胞而没有对其他组织的癌细胞杀死癌细胞(6)。单甲基极氨基蛋白E(MMAE)是一种有效的有丝分裂毒素,是几个FDA批准的ADC中的有效载荷,它通过迅速诱导细胞凋亡而杀死了主动分裂的癌细胞(7)。因此,已证明的ADC方法
案例2一名36岁的妇女表现出8个月的脸和舌头异常运动。她抱怨吞咽困难,这归因于咀嚼和吞咽过程中异常的舌头运动。她有一年的历史,有10毫克的历史,并定期使用3毫克的氟哌啶醇一年。因此,她被诊断出患有TD的口面和舌形式,并且被撤离了药物。此外,她接受了舌头上肉毒杆菌毒素的注射,但是,确切的剂量和注射部位尚无。她的症状没有任何改善;而是吞咽困难的主观加剧。在检查时,她的脸上有肌张力运动(轨道oris,心理和瓦楞纸蛋白超核心),此外,我们观察到咽部区域的微妙运动障碍运动(视频4)。所有其他调查,包括MRI头和实验室,都是正常的。舌头超声揭示了咽部区域的运动障碍运动,比舌头和口面区域的运动障碍更大(视频5)。我们向患者提供了有关该疾病的建议,并添加了四苯甲嗪,氯硝西ep剂和巴氯芬。我们计划注射肉毒杆菌毒素,这些注射针对咽肌肉和脸部。在1个月的随访中,她对吞咽困难和口面肌张力障碍的症状有所改善(视频6)。舌头的超声检查也显示出