农业中的霉菌毒素管理是维护动物和人类健康的重要挑战。选择合适的吸附剂仍然是许多饲养者的问题,也是饲料制造商的重要标准。人们仍在寻找新的吸附剂。氧化石墨烯是纳米技术领域一种很有前途的材料,其吸附性能优异。体外研究调查了氧化石墨烯对碎小麦中霉菌毒素的结合。结果表明,在 37˚C 下,氧化石墨烯对黄曲霉毒素 0.045 mg/g、玉米赤霉烯酮 0.53 mg/g 和脱氧雪腐镰刀菌烯醇 1.69 mg/g 的吸附能力。碎小麦消化的体外模拟显示在胃期吸附迅速。在矿物质中,Mg、Cu 和 Zn 的吸附量最多。 10 mg/g 剂量的氧化石墨烯对消化酶 α-淀粉酶和胰蛋白酶的抑制作用与胃蛋白酶和胃脂肪酶相比仅有轻微抑制。体外结果表明氧化石墨烯适合吸附黄曲霉毒素、玉米赤霉烯酮和脱氧雪腐镰刀菌烯醇。
DBT-NIAB 科学家研究印度奶牛以获取治疗结核病的药物 结核病 (TB) 是全球主要死亡原因之一。2018 年全球约有 1000 万新发病例和 150 万人死亡。它是艾滋病毒感染者的主要杀手,也是与抗菌素耐药性 (AMR) 相关死亡的主要原因。印度是该病负担最重的国家,估计发病率约为 269 万例。据报道,相当一部分人类结核病是由牛分枝杆菌引起的,牛分枝杆菌是牛结核病 (牛结核病或 BTB) 的主要病原菌。换句话说,牛是人畜共患结核病的主要宿主。更糟糕的是,牛的结核病也是由人类结核杆菌 M. Tuberculosis 引起的。由于多种原因,牛结核病和人畜共患结核病对印度的健康提出了独特的挑战。
摘要 背景与目的:本研究利用锌指核酸酶(ZFN)技术破坏霍乱毒素基因(ctxA),抑制霍乱弧菌(V. cholera)产生CT毒素。实验方法:设计一个工程化的ZFN,靶向ctxA基因的催化位点,将ZFN编码序列克隆到pKD46、pTZ57R T/A载体和E2-crimson质粒中,转化大肠杆菌(E. coli)Top10和霍乱弧菌,通过菌落计数法评估ZFN的转化效果。结果:转化后的大肠杆菌经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳和蛋白质印迹实验未见表达,ctxA基因测序未见突变,pKD46-ZFN质粒聚合酶链式反应结果为阴性。用含有完整 ZFN 序列的 T/A 载体转化大肠杆菌 Top10 产生 7 个菌落,所有菌落均含有具有自连接载体的细菌。用左阵列 ZFN 转化产生 24 个菌落,其中 6 个含有具有自连接载体的细菌,18 个含有具有载体/左阵列的细菌。用含有完整 ZFN 的 E2-深红色载体转化霍乱弧菌未产生任何菌落。用左阵列载体转化产生 17 个含有具有载体/左阵列的细菌的菌落。使用蛋白质印迹分析捕获左阵列蛋白带。结论和意义:由于缺乏非同源末端连接 (NHEJ) 机制,ZFN 可能脱靶细菌基因组,从而导致致命的双链 DNA 断裂。建议开发针对细菌基因的 ZFN,具有 NHEJ 修复系统的工程包装宿主是必不可少的。关键词:ctxA 基因;基因编辑工具;霍乱弧菌;锌指核酸酶。
1 KTH 皇家理工学院蛋白质科学系,Roslagstullsbacken 21, 114 17 斯德哥尔摩,瑞典; haozhong@kth.se(高清); wenyin@kth.se (WY); slindbo@kth.se (SL); haoliu2@kth.se (HL); sophia@kth.se (SH) 2 肿瘤学和病理学系,Barngatan 4,隆德大学,222 42 隆德,瑞典; mohamed.altai@med.lu.se 3 免疫学、遗传学和病理学系,Dag Hammarskjölds väg 20,乌普萨拉大学,751 85 乌普萨拉,瑞典; javad.garousi@igp.uu.se (JG); tianqi.xu@igp.uu.se(德克萨斯州); vladimir.tolmachev@igp.uu.se (VT) 4 药物化学系,达格·哈马舍尔兹街 14C;乌普萨拉大学,751 23 乌普萨拉,瑞典;anna.orlova@ilk.uu.se 5 肿瘤治疗学研究中心,托木斯克理工大学化学与应用生物医学科学研究院,634050 托木斯克,俄罗斯* 通讯地址:torbjorn@kth.se;电话:+ 46-(0)8-790-9627 † 这些作者对这项工作做出了同等贡献。
大多数临床诊断的皮肤 T 细胞淋巴瘤 (CTCL) 高度表达细胞表面标志物 CC 趋化因子受体 4 (CCR4) 和/或 CD25。最近,我们开发了基于白喉毒素的重组 Ontak 样人 IL2 融合毒素 (IL2 融合毒素) 和抗人 CCR4 免疫毒素 (CCR4 IT)。在本研究中,我们首先比较了 CCR4 IT 与 IL2 融合毒素针对人 CD25 + CCR4 + CTCL 的功效。我们证明 CCR4 IT 比 IL2 融合毒素更有效。我们进一步构建了 IL2-CCR4 双特异性 IT。双特异性 IT 比单独的 IL2 融合毒素或 CCR4 IT 更有效。双特异性IT是一种有前途的新型靶向治疗药物候选物,用于治疗难治性和复发性人类CD25+和/或CCR4+CTCL。
石房蛤毒素(STX)是最重要的海洋毒素之一,它包含一大类天然的神经毒性生物碱,通常称为麻痹性贝类毒素(PST)。1,2STX由Dino agellattette属、Gonyaulax catenella、Protogonyaulax tamarensis、Alexandrium catenella和Alexandrium minutum产生,在生活水中特别是在有害藻华(HAB)事件期间浓度相当高。3 – 5过量的STX会造成水体污染,并对其他动物、植物和微生物产生致命影响。尽管它对某些动物,例如鱼或贝类等的生长没有影响,但它会被它们包裹并在其体内积累。 STX 中毒可能导致严重甚至致命的疾病,目前尚无人工呼吸和液体疗法可解毒 STX。6 目前,澳大利亚、巴西和新西兰均已将饮用水中的石房蛤毒素浓度(毒性当量)指导值为 3 ng mL 1。7 为实时监测水环境污染、海水养殖污染和海产品安全,需要快速灵敏地检测 STX。
背景:乳腺癌是女性人群中最常见的癌症类型,约 15% 至 20% 的乳腺癌患者为人表皮生长因子受体 2 (HER2) 阳性。目前的癌症治疗方法,如手术、放疗和化疗,在降低死亡率方面效果不佳;然而,免疫疗法是一种治疗癌症的新方法,它更有效,对身体的危害更小。抗癌免疫毒素是嵌合分子,包含两部分,即免疫部分(抗体或抗体的结合片段)和毒素部分(杀伤毒素分子)。目的:在本研究中,我们试图设计一种新型免疫毒素,包括抗 HER2 受体曲妥珠单抗,它源自与空肠弯曲菌细胞致死扩张毒素 (Cj-CdtB) 的功能部分相连的单链可变片段 (scFv)。方法:分别使用 ProtParam、PROSO II 和 GORV 分析嵌合蛋白的理化性质、溶解性和二级结构。使用 I-TASSER 建立三维 (3D) 模型,并使用 GalaxyRefine 进行细化。使用 PROCHECK 和 RAMPAGE 对细化前后的模型结构进行评估。使用 AlgPred 服务器预测免疫毒素的致敏性,并使用 RNAfold 评估 mRNA 稳定性。最后,使用 ZDOCK 将免疫毒素与 HER2 对接。结果:分析表明嵌合蛋白可以是一种稳定的可溶性蛋白质,其各部分的二级结构不会改变,蛋白质具有稳健的 3D 结构,可能具有稳定的 mRNA 结构并可与 HER2 受体结合。结论:设计的免疫毒素是一种稳定的可溶性蛋白质,具有与 HER2 受体结合的能力,使其成为乳腺癌治疗的合适免疫毒素候选药物。当前研究的结果可能对未来的实验研究有用。
产气荚膜梭菌肠毒素 (CPE) 可用于消除细胞表面 CPE 受体(一种 claudins 亚群,例如 Cldn3 和 Cldn4)过表达的癌细胞。但是,CPE 无法靶向仅表达 CPE 不敏感 claudins(例如 Cldn1 和 Cldn5)的肿瘤。为了克服这一限制,使用结构引导修饰来生成可以与 Cldn1、Cldn2 和/或 Cldn5 强结合的 CPE 变体,同时保持与 Cldn3 和 Cldn4 结合的能力。这使得 (a) 能够靶向最常见的内分泌恶性肿瘤,即 Cldn1 过表达的甲状腺癌,以及 (b) 能够更好地靶向全球最常见的癌症类型,即非小细胞肺癌 (NSCLC),该类型的特点是高表达几种 claudins,包括 Cldn1 和 Cldn5。不同的 CPE 变体,包括新型突变体 CPE-Mut3 (S231R/S313H),被应用于甲状腺癌 (K1 细胞) 和 NSCLC (PC-9 细胞) 模型。体外实验中,CPE-Mut3 而非 CPEwt 表现出对 K1 细胞的 Cldn1 依赖性结合和细胞毒性。对于 PC-9 细胞,与 CPEwt 相比,CPE-Mut3 改善了紧密连接蛋白依赖性的细胞毒性靶向性。体内实验中,在带有 K1 或 PC-9 肿瘤的异种移植模型中瘤内注射 CPE-Mut3 可诱导坏死并减缓两种肿瘤类型的生长。因此,通过使用新型 CPE-Mut3,定向修饰 CPE 能够消灭 CPEwt 无法靶向的肿瘤实体,例如过表达 Cldn1 的甲状腺癌。
SFET 第 26 届毒素学年度会议 (RT26) (http://sfet.asso.fr/international) 于 2019 年 12 月 4 日至 5 日在巴黎巴斯德研究所举行。本次会议的中心主题是“毒素生物工程”,分为两个专题会议:一个是关于动物和植物毒素(我们的“核心”主题之一),另一个是关于细菌毒素,以纪念 Michel R. Popoff 博士(法国巴黎巴斯德研究所),两个专题会议都旨在强调各自主题的最新发现。来自八个国家(比利时、丹麦、法国、德国、俄罗斯、新加坡、英国和美国)的九位演讲者受邀作为国际专家介绍他们的工作,其他研究人员和学生也通过 23 场简短的讲座和 27 张海报展示了他们的工作。在注册的约 80 名参与者中,约 40% 是外国人(阿尔及利亚、比利时、丹麦、法国、德国、意大利、荷兰、俄罗斯、新加坡、英国和美国),从而凸显了 SFET 会议的国际吸引力。对于本次 RT26,SFET 旨在确保对动物/植物界和细菌界毒素感兴趣的参与者之间的公平平衡。由于 MDPI Toxins 的捐赠,最佳口头交流奖和最佳海报奖获得了两个奖项,每个奖项 250 欧元,均由 10 人组成的评审团选出。我们的赞助商慷慨提供了各种有用或有趣的小礼物,并分发给所有演讲者。最后但并非最不重要的一点是,我们热烈感谢 MDPI Toxins 的编辑们允许出版专注于“毒素生物工程”的特刊并收集本次会议报告以及同行评审的原始文章和评论。我们希望这个特刊能够吸引所有人,包括那些无法参加 RT26 会议的同事,并且它能够成为毒理学领域研究人员和学生的全面信息来源。