结果 147 例患者中,腺癌 (n=86, 59%)、印戒细胞癌 (n=37, 25%) 和鳞状细胞癌 (n=21, 14%) 为主要组织学类型。114 例 (78%) 患者可进行基因组分析。最常见的基因组变异包括 ERBB2 (15%)、KRAS (12%)、CCND1 (7%)、FGFR1-3 (8%)、EGFR (5%) 和 MET (3%)、TP53 (51%) 和 CDKN2A/B (10%)。ERBB2、MET 和 FGFR 变异仅见于腺癌和印戒细胞亚型,而 CCND1 扩增、TP53 突变和 CDKN2A/B 缺失见于腺癌和鳞状细胞亚型。 9 名患者 (8%) 接受了与其基因组变异相匹配的治疗,其中 5 名患者实现了疾病控制。在一项探索性分析中,诊断时患有 IV 期疾病且具有可操作变异的患者与没有可操作变异的患者相比,总生存期更长。
急性髓系白血病 (AML) 是一种典型的致死性分子异质性疾病,几乎没有广谱治疗靶点。不同寻常的是,大多数 AML 保留了野生型 TP53,它编码促凋亡的肿瘤抑制因子 p53。激活野生型 p53 的 MDM2 抑制剂 (MDM2i) 和靶向 BET 家族共激活因子 BRD4 的 BET 抑制剂 (BETi) 均表现出令人鼓舞的临床前活性,但作为单一药物的临床活性有限。在这里,我们报告了 MDM2i 和 BETi 的组合对 AML 细胞系、原代人类母细胞和小鼠模型的增强毒性,这是因为 BETi 能够从 p53 靶基因中驱逐出意想不到的抑制形式的 BRD4,从而增强 MDM2i 诱导的 p53 激活。这些结果表明,野生型 TP53 和 BRD4 的转录抑制功能共同代表了 AML 潜在的广谱合成治疗脆弱性。
o 等级 A:检测对 KCC 有直接影响,映射相关性较高。此映射是使用生物测定中的特定终点完成的。例如,针对 TP53 肿瘤抑制基因的检测可以直接映射到 KCC2(具有基因毒性)。类似地,针对孕酮受体基因 PGR 的检测可以直接映射到 KCC8(调节受体介导的效应)。o 等级 B:检测对 KCC 有间接/下游影响,映射相关性较低。对于这些映射,KCC 和检测之间的关系与检测终点没有直接关系。例如,映射导致 TP53 基因表达减少的途径的检测可以映射到 KCC3(改变 DNA 修复或导致基因组不稳定),因为该终点与参与 DNA 损伤反应的基因的调节有关。类似地,测量 Cyp1a1 基因表达作为 AhR 激活的生物标志物的检测可以映射到 KCC8。
结果:共对 155 个样本进行了分子分析,但 40 个样本(25.8%)不适合进行测序。在 29 个样本中比较了 BRAF V600 实时聚合酶链反应和靶向 NGS 的临床实用性,观察到非常好的一致性(Kappa = 0.89,95% 置信区间 0.68 ± 1.05)。通过 NGS 在 75 个样本(65%)中发现了致癌突变,其中 53% 是需要个性化治疗的候选人。最常见的突变基因是 BRAF(39%)、TP53(23%)和 NRAS(14%)。其他发生率较低(< 5%)的基因是:PIK3CA、ERBB4、CTNNB1、STK11、FGFR1、SMAD4、KRAS、FGFR3、PTEN 和 AKT。 40% 的样本检测到致癌突变同时发生。在已识别的突变中,TP53 在男性中明显更普遍(男性 31.8% 对比女性 12.2%,P = 0.03),NRAS 在女性中明显更普遍(男性 9.1% 对比女性 24.4%,P = 0.03)。
摘要 CRISPR-Cas9 基因组工程彻底改变了高通量功能基因组筛选。然而,最近的研究引起了人们对使用 TP53 野生型人类细胞进行 CRISPR-Cas9 筛选的性能的担忧,因为 p53 介导的 DNA 损伤反应 (DDR) 限制了生成可行编辑细胞的效率。为了直接评估细胞 p53 状态对 CRISPR-Cas9 筛选性能的影响,我们使用针对 852 个 DDR 相关基因的聚焦双向导 RNA 文库在野生型和 TP53 敲除人类视网膜色素上皮细胞中进行了并行 CRISPR-Cas9 筛选。我们的工作表明,尽管功能性 p53 状态对显著耗竭基因的识别有负面影响,但最佳筛选设计仍然可以实现强大的筛选性能。通过分析我们自己的和已发表的筛选数据,我们强调了在野生型和 p53 缺陷细胞中成功筛选的关键因素。
摘要:毒性和耐药性的产生是癌症治疗的主要挑战。顺铂是最广泛使用的化疗抗癌药物之一,其最佳剂量目前备受争议。此外,其作用的剂量依赖性分子机制尚不清楚。为了评估蛋白激酶 JNK(cJun N 端激酶)信号在肺癌治疗中的作用,我们将小分子 JNK 抑制剂与顺铂相结合。我们的研究以野生型 p53(肿瘤抑制转录因子 TP53)和突变的 RAS 携带肺腺癌细胞系 A549 为模型。在这里,我们展示了顺铂浓度依赖性的 JNK 在杀死癌细胞方面的相反作用:低顺铂浓度下具有细胞保护作用,高浓度下具有促进细胞凋亡(或中性)作用。结果表明,促存活蛋白激酶 AKT 和 TP53 的激活具有时间和剂量依赖性,在暴露于不同(低和高)顺铂浓度的细胞中具有相似的激活动力学。AKT 的选择性抑制和 TP53 的激活(表达和磷酸化)导致细胞存活率降低,表明它们参与了顺铂诱导的细胞死亡调节。在与 JNK 抑制剂 SP600125 共同处理后,顺铂处理的 A549 细胞中 TP53 和 AKT 的激活水平与它们在调节细胞死亡中的作用相关。TP53 和 AKT 被认为是介导暴露于不同浓度顺铂的 A549 细胞中 JNK 抑制结果的信号蛋白。我们的研究结果表明,应激激酶 JNK 抑制和低剂量顺铂的组合,再加上药物诱导信号的操纵,可以被视为某些肺癌的有前途的治疗策略。 ■ 引言 癌症治疗的选择是战胜这种疾病的一大挑战。已知治疗耐药性有多种原因和机制,其本质是肿瘤形成细胞的异质性,这主要由癌细胞的可塑性决定,而癌细胞的可塑性又受多种因素控制。除了基因突变外,在大多数情况下,细胞之间的非遗传差异是造成这种耐药性的原因。这些因素包括表观遗传变化、微环境条件、外在生长调节因子的存在以及细胞间相互作用,所有这些因素最终都会导致信号传导改变。可以说,改变细胞状态的各种外部影响,同时改变细胞内信号传导,也可以改变细胞对治疗的敏感性。技术的进步和对信号通路的理解导致了新靶点的发现,通过这些靶点可以改善治疗结果和患者依从性。与此同时,治疗方法也发生了变化,出现了一种新的趋势,即靶向治疗,与化疗相比,靶向治疗是一种副作用最小的更好治疗策略。与化疗不同,靶向治疗会影响肿瘤细胞,通常对健康细胞的毒性较小。靶向治疗精确瞄准在肿瘤中发生改变的特定分子靶点。
结果:在正常人体组织中,与其他组织相比,SNAI1 在肺组织中明显高表达。然而,在 LUSC 中,其表达明显下调。SNAI1 mRNA 的高表达与较差的总生存期 (OS) 和无病生存期 (DFS) 相关。SNAI1 mRNA 的表达水平还与 LUSC 患者的年龄、肿瘤大小、淋巴结转移和远处转移有关。构建了列线图来预测 LUSC 患者的生存率。此外,LUSC 中 SNAI1 蛋白的高表达与预后不良有关。高表达组的 5 年生存率为 37%,低表达组的 59%。SNAI1 蛋白在 LUSC 组织细胞中的主要亚细胞定位是细胞核,但强蛋白表达也导致其定位在细胞质和膜中。基因集富集分析 (GSEA) 揭示了 LUSC 中 SNAI1 和 TP53 信号通路之间的相关性。SNAI1 可以与 TP53 相互作用,
抽象世界上最主要的疾病之一,尤其是在女性中,是乳腺癌。乳腺癌具有称为CHEK2和TP53的肿瘤抑制基因。当Chek2和TP53基因中存在突变时,乳腺癌的机会更多。这项研究旨在研究已经准备好的纳米颗粒,这些纳米颗粒载有壳聚糖,用于细胞死亡,线粒体膜和细胞周期停滞,通过流式细胞仪和基因表达分析CHEK2和TP53基因通过实时PCR估算。使用Livak方法评估结果。对照基因和靶基因之间的平均值(±S.D)比较用于计算基因表达。结果表明,伊维菌蛋白和他莫昔蛋白NP(B+C)代表34.8%的细胞死亡,比其他与丙氨酸碘化物染色的组合要好,而与Acridine Orange tain tain tamoxifen+imectin(A+B)的组合相结合,与69.7%的g1/g1 rist.11 rist.11 rist.11 rist.11 rist.11 rist.11 rist.11 rist.11 rest.11 per a at g and 7 s g.0 s均为7.7%/g1/g1 per G2/m阶段逮捕。与对照组相比,在伊维菌素+他莫昔芬NP(B+C)中,CHEK2和TP53基因的表达水平显着增加(P <0.001)。可以得出结论,伊维菌素的他莫昔芬纳米颗粒对乳腺癌细胞表现出强大的抗增殖活性。与其他治疗组和对照组相比,含有他莫昔芬的纳米颗粒的表达水平显着增加(p <0.001)。基因表达随剂量浓度变化而变化。亚洲J. Agric。生物。关键词:乳腺癌,凋亡,细胞周期停滞,药物基因组学,基因表达如何引用:Naeem UB,Rasheed MA,Ashraf M和Zahoor My。凋亡诱导,细胞周期停滞和肿瘤基因表达分析对MCF-7细胞系列的壳莫昔芬和伊维菌素负载的壳聚糖纳米颗粒。2025(1):2023334。doi:https://doi.org/10.35495/ajab.2023.334这是根据Creative Commons Attribution 4.0许可条款分发的开放访问文章。(https://creativecommons.org/licenses/4.0),只要正确引用了原始工作,就可以在任何媒介中进行无限制的使用,分发和复制。
关键字:ETV6 :: RUNX1,基因组学,白血病,MRD,治疗反应摘要ETV6 :: Runx1白血病是儿童B细胞急性淋巴细胞性白血病的第二大最常见亚型。尽管它通常具有低复发风险,但其发病率相对较高,导致了大部分B-所有复发。最小残留疾病是预测治疗结果的关键生物标志物,而尚未鉴定出基因组生物标志物。在先前的研究中,我们使用多构数据来识别ETV6 :: Runx1全部预测治疗反应的基因组特征。作为延续,我们利用了REH和NALM-6细胞中化学疗法 - 基因相互作用的全基因组CRISPR筛查的多构数据,以研究药物反应调节基因。在这些研究中,确定了影响对化学疗法敏感性的多个基因敲除。将这些发现与患者衍生的数据进行了比较,我们发现基因级CNV与治疗反应较差,尽管在快速响应者中更常见地塞米松的敏感性缺失(p = 0.06)。接下来,我们使用295名患者的全基因组和面板测序检查了SNV和INDELS。治疗反应与转录调节剂和肿瘤抑制基因的突变有关,包括驱动基因ETV6和NF1以及三个基因(KANSL1,INTS1和TP53)与耐药性相关的基因(KANSL1,INTS1和TP53),所有这些基因在慢速响应者中都更为常见(P <0.05)。tp53突变与多药电阻有关,而kansl1和ints1
p53 被称为基因组的守护者,是最重要的肿瘤抑制因子之一。它在大多数肿瘤中处于失活状态,这是通过肿瘤蛋白 p53 (TP53) 基因突变或关键负调节因子(例如小鼠双微分 2 (MDM2))的拷贝数扩增实现的。与 MDM2 蛋白结合并破坏其与 p53 相互作用的化合物可恢复 p53 肿瘤抑制因子活性,从而促进细胞周期停滞和凋亡。先前使用 MDM2–p53 蛋白–蛋白相互作用拮抗剂 (MDM2–p53 拮抗剂) 的临床经验表明,血小板减少和中性粒细胞减少代表可能限制其治疗效用的靶向剂量限制性毒性。降低给药频率同时保持有效暴露是减轻毒性和改善 MDM2–p53 拮抗剂治疗窗口的一种方法。然而,要实现这一点,需要一种具有优异效力和理想药代动力学特性的分子。在这里,我们介绍了一种新型、在研螺环氧吲哚 MDM2-p53 拮抗剂 brigimadlin (BI 907828) 的发现和表征。Brigimadlin 在临床前模型中表现出高生物利用度和暴露量,以及剂量线性药代动力学。Brigimadlin 治疗恢复了 p53 活性并导致 TP53 野生型、MDM2 扩增癌症临床前模型中的细胞凋亡诱导。以间歇给药方案口服 brigimadlin 在几种 TP53 野生型、MDM2 扩增异种移植模型中诱导了强效的肿瘤生长抑制。探索性临床药代动力学研究 (NCT03449381) 表明,接受口服布吉马林的癌症患者的全身暴露量高,血浆消除半衰期长。这些发现支持继续
