细胞外囊泡 (EVs) 是纳米尺寸的颗粒,与各种生理和病理功能有关。它们在细胞间通讯中发挥关键作用,并被用作各种细胞成分的运输工具。在人乳中,EVs 被认为对获得性免疫的发展很重要。最先进的分析方法无法在单个囊泡水平上提供无标记的化学信息。我们引入了一种协议,利用光热扫描探针红外光谱 (AFM-IR),一种纳米级化学成像技术,来分析单个 EVs 的结构和组成。该协议包括通过微接触印刷将 EVs 固定在用抗 CD9 抗体功能化的硅表面上。固定化 EVs 的 AFM-IR 测量可提供亚囊泡空间分辨率的尺寸信息和中红外光谱。接收到的光谱与本体参考光谱相比更为有利
摘要 男性的避孕选择仅限于避孕套和输精管切除术。本综述重点介绍了各种类型的男性避孕方法,以便通过夫妻之间的相互理解(健康的计划生育)进行充分的生育控制和计划生育。男性避孕方法包括激素和非激素避孕药、避孕套、输精管切除术和使用植物中的活性成分。男性避孕与孕酮浓度、精子数量、精子活力、精子成熟度和精子活力有关。需要研究无副作用的男性避孕方法,这些方法可以控制血清孕酮水平,但不会增加氧化应激。总之,除了流行的避孕套和输精管切除术外,本文还涵盖了激素、非激素和植物性男性避孕方法。此外,它还包括对男性可用的男性避孕方法的种类和机制的部分描述。
a b s t r a c t实施单线裂变材料是提高太阳能电池效率的有效策略,而无需引入实质性的复杂性或成本。在这项研究中,我们探讨了包括四烯的双层系统中的单元激激裂裂变过程的可能性,该过程是基于铅(PB)和TIN(PB)和TIN(SN)的混合物(CH 3 NH 3 NH 3 NH 3 nH 3 nH 3 nH 3 X x Pb 1- i 3)。我们首先合成了一系列解决方案的低频带gap ch 3 nh 3 nh 3 x pb 1 -x i 3 perovskites(0 然后,我们将热蒸发的四烯耦合为有机分子三重敏敏化剂,三重态能量为≈1.3eV,ch 3 nh 3 nh 3 nh 3 x x pb 1 -x i 3 perovskites(0 我们的发现表明,从四烯烯到钙钛矿没有明显的能量转移,这是由四烯烯在钙钛矿的激发扫描中的负贡献所证明的,并且当与四烯交织时,钙钛矿峰的磁场光致发光响应没有磁场光致发光响应。 这些结果为开发基于钙钛矿的单线嵌入太阳能电池提供了宝贵的见解。然后,我们将热蒸发的四烯耦合为有机分子三重敏敏化剂,三重态能量为≈1.3eV,ch 3 nh 3 nh 3 nh 3 x x pb 1 -x i 3 perovskites(0 我们的发现表明,从四烯烯到钙钛矿没有明显的能量转移,这是由四烯烯在钙钛矿的激发扫描中的负贡献所证明的,并且当与四烯交织时,钙钛矿峰的磁场光致发光响应没有磁场光致发光响应。 这些结果为开发基于钙钛矿的单线嵌入太阳能电池提供了宝贵的见解。我们的发现表明,从四烯烯到钙钛矿没有明显的能量转移,这是由四烯烯在钙钛矿的激发扫描中的负贡献所证明的,并且当与四烯交织时,钙钛矿峰的磁场光致发光响应没有磁场光致发光响应。这些结果为开发基于钙钛矿的单线嵌入太阳能电池提供了宝贵的见解。
该研究项目的目的是通过提供适当的细胞外基质(ECM)提示来完善诱导的多能干细胞(IPSC)神经元模型。IPSC技术提供了前所未有的对人类中枢神经系统的访问,并使模型的构建能够研究神经发育和神经系统疾病机制。但是,IPSC衍生的神经元的培养物具有局限性,例如形态成熟,突触连通性和电生理活性。的确,转录分析表明它们类似于晚期胚胎的神经元与早期产后阶段,这阻碍了成人发作神经退行性疾病的研究。我们假设缺乏适当的时空ECM信号是这些局限性的主要因素。ECM是一种复杂组织的分泌蛋白质和复杂糖的细胞间支架,可在整个中枢神经系统中配置时空微环境。它为神经元提供了关键的结构支持,可作为可溶性因子的储层,并介导调节神经元发育,成熟和衰老的细胞信号传导。然而,中枢神经系统中源自定义为ECM和ECM相关蛋白的合奏的时间多样性和功能效应的特征很差。因此,不可能培养IPSC衍生的神经元的体外平台设计,这些神经元真正概括了生理ECM。在这里,我们将首先使用生化纯化和定量质谱法(MS)的蛋白质组学来定义体内人CNS基质组重塑的组成和性质。然后,我们将利用IPSC技术和生物材料的联合专业知识来建立ECM模拟矩阵,这些矩阵可以概括生理基质组的结构和调节活性,以促进2D和3D干细胞衍生细胞衍生的神经模型的成熟和衰老。
阿尔茨海默氏病(AD)在具有认知功能的脑皮质和海马等地区引起淀粉样β(Aβ)斑块形成。除了氧化应激,神经炎症和乙酰胆碱外,AD患者的谷氨酸能途径的变性还会导致乙酰胆碱在皮质和海马中积累,从而形成AβPlaque。在此,我们研究了大麻sativa成分的大麻二酚(CBD)和大麻醇(CBG)对Aβ1-42Aβ1-42的脑室内(ICV)给药引起的AD样认知缺陷的影响。sprague dawley大鼠分为四组:i)控制,ii)阿尔茨海默氏症,iii)阿尔茨海默氏症+CBD和iv)阿尔茨海默氏症+CBG。通过ICV注射Aβ1-42,然后对CBD和CBG处理诱导了AD模型2周。进行了开放式测试,被动避免测试和莫里斯的水迷宫测试,在第15天,将大鼠斩首。从大脑中去除海马和脑皮质,并通过ELISA测量白细胞介素1β(IL-1β)的水平,肿瘤坏死因子-α(TNF-α),并通过免疫组织化学评估了Aβ1-42表达。通过开放田测试评估的参数中两组之间没有显着差异。在被动避免和莫里斯的水迷宫测试中,CBD和CBG都增强了AD损害的学习记忆功能。CBD和CBG处理成功降低了AD中TNF-α和IL-1β的水平。免疫组织化学分析显示,CBD和CBG治疗组中Aβ1-42的表达降低。CBD和CBG处理改善了Aβ1-42诱导的AD模型中的学习和记忆缺陷。 我们暗示,这些实验发现将导致对C. sativa(草药起源及其成分的天然产物)的有针对性研究的更好途径,该研究可能有可能用于AD治疗。CBD和CBG处理改善了Aβ1-42诱导的AD模型中的学习和记忆缺陷。我们暗示,这些实验发现将导致对C. sativa(草药起源及其成分的天然产物)的有针对性研究的更好途径,该研究可能有可能用于AD治疗。
背景与目标:血肿的扩张是原发性急性脑内出血(ICH)临床结果不佳的重要预测指标。旋流符号被描述为一个被超密集急性出血包围的缺陷或同管的区域。这项研究旨在描述ICH中的漩涡迹象,其流行率,并确定漩涡迹象,漩涡体积以及漩涡与初始血肿的比率是否与血肿的扩张相关,并预测ICH中的临床结果。方法:包括96小时内具有初始ICH(CT1)和重复CT(CT2)的163例患者。使用“ ITK SNAP”的半自动分割计算了旋流符号,其体积和旋流体积与血肿体积的比率与血肿体积的比率相比。统计分析以评估血肿扩展的数据参数以及1个月的功能结果和死亡率之间的关系。结果:卡方检验表明,漩涡符号与血肿的膨胀(P <0.001)与MRS分数(p <0.05)之间存在显着关联。Spearman相关性显示漩涡迹象与血肿膨胀体积之间存在显着的中等相关性(r = 0.518,p <0.001)。漩涡体积/初始血肿的比例表现出低相关性,但随着血肿膨胀而显着(r = 0.28 p <0.05)。结论:漩涡符号,其体积以及旋流体积与初始血肿的比率与血肿的膨胀有关。它可以用作一个月的死亡率和功能结果的预测指标。
抗菌肽 (AMP) 选择性地识别和摧毁微生物,与传统抗生素不同,它在对宿主细胞无害方面具有独特优势。AMP 具有阳离子特性和两亲性,这有助于它们与微生物膜相互作用。AMP 在解决感染方面的关键作用基于两种主要机制:直接破坏病原体和免疫调节。AMP 通过适应性免疫扩大其治疗潜力。最后,通过增强先天性和适应性免疫,AMP 通过破坏微生物膜、通过促进 T 淋巴细胞和 B 淋巴细胞的激活、中性粒细胞和巨噬细胞刺激来溶解外来细胞,从而促进病原体的消除。由于 AMP 具有多种作用方式/多任务处理,因此产生耐药性的可能性较低。由于最难治疗的感染是细胞内细菌感染,而抗生素对这种感染几乎无效,因此 AMP 正成为一种有希望的治疗替代方法。总之,同一种 AMP 可以以多种结构和功能形式表达,从而提高其适应性和对抗各种微生物攻击的有效性。抗菌肽 (AMP) 是免疫系统的重要组成部分,能够选择性地识别和消灭寄生在宿主体内的微生物。与传统抗生素不同,AMP 在靶向病原体而不对宿主细胞造成伤害方面具有独特优势。这些短肽通常由 12 到 50 个氨基酸组成,由于含有大量带正电的氨基酸,因此具有阳离子特性。这使它们能够表现出两亲行为,具有促进与微生物膜相互作用的亲水和疏水区域。AMP 不仅因其杀菌特性而至关重要,还因其调节免疫反应的能力而至关重要,从而增强先天性和适应性免疫。AMP 通过两种主要机制在解决感染方面发挥着关键作用:直接杀死病原体和免疫调节。前者通过破坏微生物膜导致细胞裂解来实现,而后者则涉及刺激中性粒细胞和巨噬细胞等免疫细胞,从而加剧炎症并加速病原体清除。最近的研究表明,AMP 还会影响适应性免疫,促进 T 和 B 淋巴细胞的激活,从而扩大其治疗潜力。重要的是,由于 AMP 的作用方式多样且同时发生,因此产生耐药性的可能性较低。最难治疗的感染之一是细胞内细菌感染,病原体在宿主细胞内复制。抗生素在这些情况下通常会失败,因为它们穿透宿主细胞的能力有限,而且抗生素耐药性问题日益严重,这会阻止抗生素的治疗浓度在受感染细胞内达到有效水平。因此,这些感染可能会持续并变成慢性感染,从而逃避标准抗生素治疗。相反,AMP 正在成为治疗细胞内感染的一种有前途的替代方案。总之,同一种 AMP 可以表现出多种结构和功能特性,表现出高度的多功能性。这些重叠的特性通常会增强它们对各种微生物威胁的适应性和有效性。
开发正电子发射断层扫描示踪剂以检测错误折叠的聚集体SYN将彻底改变早期诊断,疾病监测和评估治疗功效。在这里,我们介绍了[11 C] MODAG-005的体外和体内验证的发育和临床前的验证。体外结合实验证明了与重组纤维纤维以及人脑组织中的syn夹杂物的亚洋摩尔结合亲和力。使用自显影和微动摄影术检测到多系统萎缩(MSA)脑组织中的特异性结合,并通过免疫染色进行了验证。体内,[11 C]模量-005显示出良好的脑穿透性,脑组织的快速清除以及啮齿动物和非人类灵长类动物的代谢产物低的代谢产物形成。此外,在syn fibril注射的大鼠模型和syn(A30p)转基因小鼠模型中,在与病理载荷相关的syn fibril大鼠模型中达到了明显的结合和良好的信噪比。为了验证其在治疗发展中的价值,我们显示了候选药物Anle138b在SYN(A30p)小鼠和MSA的脑组织中的目标参与,以及在syn fibril注射的大鼠中的体内。最后,我们在临床上建立MSA的第一个人类患者中的翻译方法显示,在受Syn病理学影响的区域中,示踪剂的结合具有明显的示踪剂结合,尤其是在纹状体中,该模式与多巴胺转运蛋白转运蛋白转运蛋白单光子发射计算机进行计算计算计算机的神经变性相对应。目前仅通过验尸尸检才有可能进行确定的诊断[1]。在阿尔茨海默氏病(AD)中,突触核酸症,例如帕金森氏病(PD),痴呆症患有路易的身体(DLB)和多个系统萎缩(MSA),是神经退行性疾病,对我们的衰老社会构成了重大威胁。他们共同的神经病理学标志是存在错误折叠的syn的存在,它在大脑中的空间分布依赖于阶段和疾病的类型。病理学的积累开始在第一次(运动)症状发作之前的几年开始,因此将是早期检测和监测疾病进展的极好的生物标志物[2]。正电子发射断层扫描(PET)是一种非侵入性成像技术,可追溯到为体内特定生物学靶标设计的放射性标记的分子[3]。
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 12 月 18 日发布。;https://doi.org/10.1101/2024.12.17.628987 doi:bioRxiv 预印本
蒙特利尔大学医院中心研究中心 (CRCHUM) 和蒙特利尔大学医学院放射学、放射肿瘤学和核医学系正在寻找放射化学领域的教授研究员职位,负责开发和验证医学成像(正电子发射断层扫描 - PET 和其他模式)中使用的放射性示踪剂。候选人将制定一项创新的研究计划,融入从事转化研究的各种多学科团队,促进基础研究成果向临床应用的转化,用于患者、健康个体或动物的诊断、监测和治疗。作为放射学、放射肿瘤学和核医学系的成员,研究人员将被要求在一个充满活力的团队内工作,在加拿大最大的研究中心之一 CRCHUM 和蒙特利尔大学网络内工作 CRCHUM 是少数包含专门用于成像和工程的研究轴的研究中心之一。