脂肪性肝炎; MASH)[2]。Mash是MASLD的更严重的形式,其特征是细胞损伤,炎症和疤痕。MASH中持续的炎症和肝损伤会导致肝硬化和肝细胞癌的发展。尽管发病率很高,而且全球健康的影响越来越大,直到最近,还没有针对MASLD/MASH的批准治疗方法。2024年3月,甲状腺激素受体β(THR-β)的部分激动剂Resmetirom被FDA批准为MASH的第一种治疗方法[3]。最近批准了用于治疗非乳糖毒物的成年人的批准,对MASLD/MASH患者的治疗可能性产生了重大影响,但药物诱导的肝毒性以及与其他药物(例如statins)的潜在相互作用的可能性[4]意味着仍然需要替代治疗。因此,患者的教育和生活方式的改变仍然被认为是防止MASLD/MASH进展的主要工具,并且迫切需要开发一种解决泥浆基础的复杂病理生理学的治疗方法。
图 2 | 通过电化学抛光稳定的量子电导能级。a. 忆阻单元中的 SET 过程示意图,该过程是一种电化学驱动过程,且尖端形成的电场进一步加速了这一过程。细丝生长过程中的恶劣条件通常会导致量子电导能级的高度不可预测性和多变性。b. RESET 过程中的电化学抛光效应能够通过首先去除/溶解接触配置中的不稳定原子而保留更稳定的原子来获得更可靠的量子电导能级。在此框架中,系统通过离散的电导能级从低阻态 (LRS) 演变为中间亚稳态电阻态 (MRS) 再演变为量子点接触 (QPC)。在 RESET 过程中,不稳定的原子将从细丝中去除,留下最稳定的原子形成稳定的 QPC。c.循环示例:通过 100 mV/s 的电压扫描速率获得突然 SET,通过慢速电压扫描(1.2 mV/s)通过电化学抛光获得逐渐 RESET。d. 通过电化学抛光获得的 RESET 过程显示稳定的量子电导平台,为 𝐺 0 的倍数。插图显示了扫描施加电压时量子电导平台随时间的稳定性。
程序代码 简要说明 开始日期 00851 麻醉输卵管结扎术 07/01/2023 00921 麻醉输精管切除术 07/01/2023 11976 取出避孕胶囊 07/01/2023 11981 插入药物植入物 07/01/2023 11982 取出药物植入装置 07/01/2023 11983 取出/插入药物植入物 07/01/2023 36415 静脉穿刺 07/01/2023 46900 破坏肛门病变 07/01/2023 46924 破坏肛门病变 07/01/2023 54050 破坏阴茎病变 07/01/2023 54056 冷冻手术阴茎病变 07/01/2023 54065 破坏阴茎病变 07/01/2023 55250 切除精子管 07/01/2023 56501 破坏外阴病变模拟 07/01/2023 56515 破坏外阴病变/S Compl 07/01/2023 57061 破坏阴道病变样本 07/01/2023 57150 治疗阴道感染 07/01/2023 57170 安装隔膜/帽 07/01/2023 57421 检查/活检阴道镜检查 07/01/2023 57452 宫颈检查 07/01/2023 57454 宫颈切除/刮除 07/01/2023 57455 宫颈活检 07/01/2023 57456 宫颈刮除 07/01/2023 57460 宫颈切除 07/01/2023 57461 宫颈切除 07/01/2023 57500 宫颈活检 07/01/2023 57520 宫颈锥切 07/01/2023 57522宫颈 07/01/2023 58300 置入宫内节育器 07/01/2023 58301 取出宫内节育器 07/01/2023 58340 子宫造影导管 07/01/2023 58600 输卵管切断 07/01/2023 58615 闭塞输卵管 07/01/2023 58661 腹腔镜检查 切除附件 07/01/2023 58670 腹腔镜检查 输卵管烧灼 07/01/2023 58671 腹腔镜检查 输卵管阻塞 07/01/2023 58700 切除输卵管 07/01/2023
约翰内斯·M·M·马森(Johannes M. M. M. M.温德冬季6,Lena Alessandra Riva 7.8,Stefanie Trinh 9,Laura Mitchell 10,10 Jonathan Hartman 11,David Berry 10,5.6.13,Michael Pester 3.14,ABT 3.5,Lorenz 12 C. 12 C.
与继续主导整个医药市场的化学药品相比,蛋白质疗法具有 14 更高的特异性、更高的活性和更低的毒性的优势。虽然几乎所有现有的治疗性蛋白质 15 都是针对可溶性或细胞外靶标开发的,但蛋白质进入细胞并靶向细胞内 16 区室的能力可以显著拓宽它们对大量现有靶标的效用。鉴于它们的物理、化学、17 生物不稳定性可能会引起不良影响,并且它们穿过细胞膜的能力有限,因此需要递送 18 系统来充分发挥它们的生物潜力。在这种情况下,作为天然蛋白质纳米载体,19 细胞外囊泡 (EV) 前景广阔。然而,如果不是天然存在的,将感兴趣的蛋白质 20 带入 EV 并非易事。在这篇综述中,我们将探讨将外在蛋白质装入 EV 的方法,21 并将这些天然载体与其接近的合成对应物脂质体/脂质纳米颗粒进行比较,以诱导 22 细胞内蛋白质递送。 23 24 25 关键词:外泌体 - 微囊泡 - 治疗性蛋白质 - 细胞质递送 - 脂质体 - 大分子 26 递送 - 矢量化 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Stéphane Emery、Sylvain Fieux、Benjamin Vidal、Pierre Courault、Sandrine Bouvard 等人。[18F]2FNQ1P 作为大鼠、猪、非人类灵长类动物和人类脑组织中 5-HT6 受体特异性 PET 放射性示踪剂的临床前验证。核医学与生物学,2020 年,82-83,第 57-63 页。�10.1016/j.nucmedbio.2020.01.006�。�hal-03035781�
下一代测序 (NGS) 的进步大大加速了微生物学研究创新方法的发展。在本研究中,我们提出了一种新方法来量化细胞内环境中基因缺失突变体的净存活率。该方法基于标准化的 Illumina 基因组 DNA 短读测序,无需在每个缺失突变体上使用特定的选择标记。验证结果表明,该方法可以准确量化混合突变体的加标池中的突变体,与基于 CFU 测定的预期值相比没有统计学上显着差异( p > 0.05)。此外,该方法还用于量化巨噬细胞中的 S . Gallinarum 突变体。将六个突变体和一个对照菌株混合在一个池中,并让其感染 HD11 细胞 2 小时。结果与之前的研究结果一致,为混合突变体感染在功能基因鉴定中的可行性提供了证据。值得注意的是,该方法的简单性和标准化植根于标准全基因组测序协议,使其可在各个实验室中轻松实施。
神经元 (nEV) 释放的细胞外囊泡 (EV) 为测量周围循环的脑生物标志物提供了机会。目前还没有研究直接比较脑组织中的分子货物与人类循环中发现的 nEV。我们比较了 microRNA 和环境化学物质的水平,因为 microRNA 是研究最多的 nEV 货物之一,具有作为生物标志物的巨大潜力,而 nEV 中的环境化学负荷研究不足,可以揭示大脑中的化学物质水平。为此,我们利用匹配的脑组织和血清组,并分离血清总 EV 和血清 nEV。我们还生成并比较了不同匹配血清、血清总 EV 和血清 nEV 中的代谢组学谱,因为 nEV 中的代谢物货物也研究不足,但可以提供潜在的生物标志物。高表达的脑组织 miRNA 与 nEV 的相关性比血清或总 EV 更强。我们在 nEV 中检测到了几种环境化学污染物类别。 nEV 中的化学污染物浓度与脑组织水平的相关性比脑组织与血清或总 EV 之间的相关性更强。我们还在 nEV 中检测到了几种内源性代谢物。与血清和总 EV 相比,具有已知信号传导作用的代谢物有所丰富,例如胆汁酸、油酸、磷脂酰丝氨酸和类异戊二烯。我们提供的证据表明 nEV 货物与脑组织内容密切相关,进一步支持了它们作为脑液体活检的实用性。
组织靶向:为了对大多数疾病状况提供有效治疗,到达中枢神经系统 (CNS) 是 ERT 的主要挑战之一。事实上,静脉输注的重组酶无法穿过血脑屏障 (BBB) 进入 CNS [13] 。用于 ERT 的重组酶等大极性分子很难穿过 BBB [14] ,而通过与针对脑内皮受体(例如胰岛素或转铁蛋白受体)的单克隆抗体融合而显示出增加脑内皮细胞转胞吞作用的酶目前正在进行 MPS 的临床研究 [15] 。ERT 仅被临床批准用于治疗极少数疾病 [表 1]。对于临床批准的 ERT,主要靶向是外周部位。一旦进入循环,施用的酶的半衰期很短。施用的重组酶大部分分布到内脏器官 [5,6] 。
AI artificial intelligence ROI region of interest eNM extracellular neuromelanin SND substantia nigra pars compacta, dorsal tier H&E Hematoxylin and Eosin SNL substantia nigra pars compacta, lateral part iNM intracellular neuromelanin SNpc substantia nigra pars compacta PD Parkinson's disease SNV substantia nigra pars compacta,腹侧