在研究中,预计将重点关注与社会科学有关的数据分析。 在计算机科学和社会科学方面的跨学科研究经验。 此外,需要从以下列表中获得两个或多个主题的经验:社交系统的网络分析;基于代理的社会现象模拟;使用计算方法来映射和研究文化模式和动态;可产生性能;数据分析的道德方面;社会科学中的定量,定性和算法的综合; So-Cio技术系统的设计和评估;数字通信分析。在研究中,预计将重点关注与社会科学有关的数据分析。在计算机科学和社会科学方面的跨学科研究经验。此外,需要从以下列表中获得两个或多个主题的经验:社交系统的网络分析;基于代理的社会现象模拟;使用计算方法来映射和研究文化模式和动态;可产生性能;数据分析的道德方面;社会科学中的定量,定性和算法的综合; So-Cio技术系统的设计和评估;数字通信分析。
Albemarle地区房地产有限责任公司Albemarle地区房地产学校818 Bryson Arch Chesapeake,VA 23323 PH:919 518 5145电子邮件:tanyasekhon@albemarlearleasleaschooleaschooleastate.com
*联系人:m.pabst@tudelft.nl摘要基于废水的监视已成为监测病原体,抗生素耐药性基因以及测量种群水平暴露于药物和化学物质的强大工具。虽然监视方法通常靶向小分子,DNA或RNA,但废水也包含大量蛋白质。然而,尽管环境蛋白质组学最近取得了进步,但对废水中蛋白质生物标志物的大规模监测仍然远非常规。分析原始废水由于有机和无机物质,微生物,细胞碎片和各种化学污染物的异质混合物而提出了挑战。为了克服这些障碍,我们开发了一种废水元蛋白质组学方法,包括有效的蛋白质提取和优化的数据处理管道。管道利用从头测序来自定义大型公共序列数据库,以实现全面的元蛋白质组学覆盖范围。使用这种方法,我们分析了从两个城市地点收集的三个月内收集的废水样品。这揭示了一个核心微生物组,其中包括大量微生物,肠道细菌和潜在的机会病原体。此外,我们确定了近200种人类蛋白质,包括有前途的人口水平的健康指标,例如免疫球蛋白,泌尿瘤蛋白和与癌症相关的蛋白质。废水流是化学物质,有机化合物,微生物和生物分子(例如DNA和蛋白质)的复杂集合,其中很大一部分来自人类活动。关键词:荟萃蛋白质组学,废水,基于废水的流行病学,生物标志物,肠道微生物在全球介绍,每年生产约380万亿升的废水,并且随着世界人口的稳步增长,在未来50年中估计它将在未来50年中估计几乎是两倍。对微生物病原体,病毒和物质(例如药物,农药和压力和饮食的生物标志物)的废水分析已成为常规实践。Cristian G. Daughton在2001年2 - 4年被称为基于废水的流行病学(WBE)。今天,WBE包括各种生物学生物标志物,以评估人群5级的健康状况。基于废水的流行病学(WBE)已被证明可有效识别和监测流行病暴发。 ,例如,在1980年代,芬兰和以色列的废水监视提供了对脊髓灰质炎病毒传播6 7的见解。 此外,在冠状病毒大流行期间,各种研究小组和政府建立了COVID-19-19监视计划8 9 10。 这个知情的政府机构和公众关于SARS-COV-2 11、12的传播。 此外,某些细菌的存在还可以告知抗菌耐药性和各种疾病的传播13-17 18 19。 除了匿名的优势外,废水的收集相对便宜,并且可以适用于较大的人口规模。 对小分子(例如药物)的检测采用色谱分离,并结合了质谱20。基于废水的流行病学(WBE)已被证明可有效识别和监测流行病暴发。,例如,在1980年代,芬兰和以色列的废水监视提供了对脊髓灰质炎病毒传播6 7的见解。此外,在冠状病毒大流行期间,各种研究小组和政府建立了COVID-19-19监视计划8 9 10。这个知情的政府机构和公众关于SARS-COV-2 11、12的传播。此外,某些细菌的存在还可以告知抗菌耐药性和各种疾病的传播13-17 18 19。除了匿名的优势外,废水的收集相对便宜,并且可以适用于较大的人口规模。对小分子(例如药物)的检测采用色谱分离,并结合了质谱20。对病毒,微生物或抗菌耐药基因的分析通常采用靶向方法,例如各种基于核酸的聚合酶链反应方法21-26。最近,使用下一代测序方法的非靶向方法变得更加负担得起,并且在研究水和废水环境方面越来越流行24,27-30。
在预测恒星的演化和死亡方面,恒星进化模型的最新进展。我们提出了使用更新的P ARSEC v2.0代码计算的新的恒星进化模型,以获得金属和初始质量的全面和均匀的网格。核反应网络,质量损失处方和元素混合的处理都在P ARSEC v2.0中进行了更新。我们计算了跨越Z = 10-11至Z = 0的13个初始金属性的模型。03,质量范围从2.0m⊙到2000 m,由1100多个库(包括纯模型在内的2100个轨道)组成。对于每条轨道,从预先序列到最先进的早期抗肌肉分支或苏植物前阶段(取决于恒星质量)的进化。在这里,我们描述了轨道的特性及其化学和结构进化。我们计算了最终的命运和残余物质,并为每种金属性建立了质谱,发现合并的黑洞(BH)配对质量质量间隙仅在100至130 m⊙之间。此外,残留质量提供了与观察到的BH质量一致的模型,例如GW190521,Cygnus X-1和Gaia BH3二进制系统的BH质量。我们计算并提供了从恒星风和爆炸性最终命运以及电离光子速率的化学喷射。我们展示了金属性如何影响这些恒星的进化,命运,喷射和电离光子计数。所有模型均可公开可用,可以在P ARSEC数据库中检索。我们的结果表明,与不同代码计算的其他轨道的总体一致性很强,由于混合和质量损失的不同处理,对于非常巨大的恒星(M Zams> 120m⊙)而出现了最显着的差异。与大型麦哲伦云的狼蛛星云中观察到的大量恒星样本的比较表明,我们的轨道很好地重现了主要序列上的大多数恒星。
摘要 - 许多研究表明,可以从脑电图数据中解码听觉对自然语音的关注。但是,大多数研究都集中在选择性的听觉注意力解码(SAAD)上,而竞争扬声器则是对单个目标的绝对听觉注意解码(AAAD)的动态。AAAD的目标是衡量对单个演讲者的关注程度,在心理和教育环境中的客观衡量注意力。为了调查这种AAAD范式,我们设计了一个实验,主题在不同的细心条件下听到视频讲座。我们训练了神经解码器,以在基线的细节状态重建脑电图中的语音信封,并使用解码和真实语音信封之间的相关系数作为注意语音的指标。我们的分析表明,1-4 Hz频段中语音包膜的包络标准偏差(SD)与该指标在语音刺激的不同段之间密切相关。然而,这种相关性在0.1-4 Hz频段中削弱,其中专注状态和注意力不集中的状态之间的分离程度变得更加明显。这突出了0.1-1 Hz范围的独特贡献,从而增强了注意状态的区别,并且仍然受到混杂因素的影响,例如语音信封的时变动态范围。
带有管理板的圆桌会议。MWB Research与Circus,Nikolas Bullwinkel和Claus Holst-Gydesen以及CFO Fabian Becker的两个Coos主持了一个受人尊敬的在线圆桌会议。该事件的录制可在此处获得:https://research-hub.de/events/video/2025-02-02-05-13-30/ca1-gr。引入新的共同首席执行官。几天前,克劳斯·霍尔斯特·埃德森(Claus Holst-Gydesen)与马戏团一起担任全球扩张和战略首席执行官,与尼古拉斯·布尔温克尔(Nikolas Bullwinkel)一起工作。claus借此机会给了我们迄今为止他的职业生涯的简短介绍和摘要。他拥有丰富的国际高级管理经验,最近是维加(Viega)的首席执行官。Viega是整个设备行业的全球市场和技术领导者,在全球十个地点拥有5500多名员工。在Claus的领导下,从2015年到2024年,维加将其营业额提高到23亿欧元,并成功地扩展到了美国市场。加入Viega之前,Claus曾是Werhan KG&Zwilling的首席执行官,并在迪士尼,惠而浦和Arla担任高级职位。鉴于马戏团计划的全球扩张,克劳斯的国际经验和40年的记录的规模和节奏应该是一项巨大的资产。将目光投向美国市场。马戏团对其CA-1自主厨房的早期兴趣非常令人鼓舞,导致预订为8,400个CA-1单位,其设备销售价值为18亿欧元,另有17,000个正在进行的谈判。迄今为止的预订主要来自欧洲和亚洲客户,但马戏团现在准备进入美国市场。陈列室将很快在纽约开业(以及上海一个),不仅是为了向潜在客户展示CA-1的能力,而且还向美国投资者推广公司。以及与其制造合作伙伴一起,该公司正在考虑中期的美国生产设施,此外,目前在中国正在加速的35,000 m 2网站。
摘要阿尔茨海默氏病(AD)影响了全球超过5500万人,但关键的遗传贡献者仍然没有尚未确定。利用基因组元素模型的最新进展,我们提出了创新的反向基因发现技术,这是一种神经网络结构中一种突破性的神经元到基因的回溯方法,以阐明新型的因果关系遗传生物标志物推动了AD套装。逆向基因 - 包括三个关键创新。首先,我们利用这样的观察结果,即引起AD的概率最高的基因(定义为最有因果基因(MCG))必须具有激活那些引起AD的最高可能性的神经元的最高可能性,该神经元被引起AD的可能性最高,被罚款为最大的神经元(MCNS)。其次,我们在输入层处取代基因令牌表示,以允许每个基因(已知或新颖的AD)表示为输入空间中的疾病和独特的实体。最后,与现有的神经网络体系结构相反,该架构以馈送方式跟踪从输入层到输出层的神经激活,我们开发了一种创新的回溯方法,可以跟踪从MCNS到输入层的向后进行识别,从而识别最引起的代币(MCTS)和Corre-McGs。逆向基因 - 高度解释性,可推广和适应性,为在其他疾病情景中应用提供了有希望的方法。
多对象跟踪(MOT)是各个领域的关键任务,例如官能分析,监视和自动驾驶汽车。联合检测和追踪范式已经进行了广泛的研究,在训练和部署经典的逐个检测范式的同时,在实现先进的性能的同时,训练和部署更快,更方便。本文通过利用现行的卷积神经网络(CNN)和新型视觉变压器技术局部性来探讨增强MOT系统的可能性。在计算机视觉任务中采用的变压器中有几种延期。虽然变形金刚擅长建模全局信息以进行长时间的嵌入,但缺少学习本地特征的局部机器。这可能导致小物体的疏忽,这可能会导致安全问题。我们将TransTrack MOT系统与localvit所赋予的局部性机制相结合,并发现该位置增强系统在MOT17数据集上比基线TransTrack优于基线转移。
摘要 — 自动眼动追踪对于与患有肌萎缩侧索硬化症的人互动、用眼睛控制电脑鼠标以及对葡萄膜黑色素瘤进行控制性放射治疗都具有重要意义。据推测,凝视估计的准确性可能通过使用前庭眼动反射来提高。这种不自主的反射会导致缓慢的补偿性眼动,与头部运动的方向相反。因此,我们假设在眼动追踪过程中让头部自由移动一定比保持头部固定、只让眼睛移动产生更准确的结果。本研究的目的是创建一个低成本的眼动追踪系统,通过保持头部自由移动,将前庭眼动反射纳入凝视估计中。所用的仪器包括一个低成本的头戴式网络摄像头,可记录一只眼睛。尽管用于记录的网络摄像头是低端的,并且没有直接照明,但瞳孔检测是完全自动和实时的,采用了简单的基于颜色和基于模型的混合算法。本研究测试了基于模型的算法和基于插值的算法。根据凝视估计结果中的平均绝对角度差,我们得出结论,基于模型的算法在头部不动时表现更好,而在头部移动时同样表现良好。当头部自由移动时,使用任一算法,凝视点与目标点的大多数偏差小于 1 ◦,可以得出结论,我们的设置完全符合文献中的 2 ◦ 基准,而头部不动时的偏差超过 2 ◦。所使用的算法之前未在被动照明下进行测试。这是首次研究考虑到前庭眼反射的低成本眼动追踪装置。
最近,智能运输系统(ITS)已成为应对城市交通管理日益严重的挑战的重要组成部分。随着车辆密度的指数升高和道路安全问题的增加,发展有效且可扩展的交通解决方案已变得必不可少。本文探讨了最先进的计算机视觉技术的整合,以有效地应对这些挑战。交通监控系统的演变:交通监控的根源可以追溯到传统方法,例如手动监视和静态传感器,尽管在特定方案中有效,但在可伸缩性,实时适应性和精度方面有限制。多年来,人工智能和计算机视觉的进步改变了这一景观,从而实现了实时和自动化的交通分析。引入了诸如YOLO(您只看一次)和高级跟踪算法(例如Bytetrack)等深度学习模型的引入进一步提高了流量监控系统的准确性和鲁棒性。Yolov8是Yolo系列中的最新迭代,它带来了改进的对象检测功能,包括更高的精度和更快的推断。Bytetrack是一种尖端的多对象跟踪算法,即使在诸如遮挡和高速运动之类的具有挑战性的条件下,也可以确保跨视频帧的稳定和可靠的跟踪。