摘要 近 90% 的人类致病突变是由微小的基因变异引起的,有效纠正这些错误的方法至关重要。进行微小 DNA 改变的一种方法是提供单链寡脱氧核苷酸 (ssODN),该单链寡脱氧核苷酸包含一个改变,并在基因组的目标位点处与靶向双链断裂 (DSB) 相结合。将 ssODN 供体与 CRISPR-Cas9 介导的 DSB 结合是引入微小改变的最简化方法之一。然而,在许多系统中,这种方法效率低下,并且会在基因连接处引入不精确的修复。我们在此报告一种使用 ssODN 和 CRISPR-Cas9 的时空定位来改进基因改变的技术。我们表明,通过将 ssODN 模板与反式激活 RNA (tracrRNA) 融合,我们可以恢复精确的基因改变,并且在体外和体内的整合度和精确度都有所提高。最后,我们表明该技术可用于与其他基因编辑工具(如转录激活因子如效应核酸酶)一起增强基因转换。
选项2:使用Hibit印迹确认全长蛋白的表达。取编辑的细胞样品,并用首选缓冲液裂解。在凝胶上运行样品,将蛋白质转移到膜上并使用纳米-Glo®Hibit印迹系统检测。使用未经编辑的细胞作为背景的负面对照。
CRISPR 技术是研究基因组功能的强大工具。为了帮助从众多可能的选项中挑选出对目标靶标具有最大功效的 sgRNA,几个研究小组开发了预测 sgRNA 靶向活性的模型。尽管多种 tracrRNA 变体通常用于筛选,但现有的模型在提名 sgRNA 时都没有考虑到这一特征。在这里,我们开发了一个靶向模型,规则集 3,它可以对多种 tracrRNA 变体做出最佳预测。我们在一个新的 sgRNA 数据集上验证了规则集 3,该数据集涵盖了必需和非必需基因,与之前的预测模型相比有显著的改进。通过分析 tracrRNA 变体之间 sgRNA 活性的差异,我们表明 Pol III 转录终止是 sgRNA 活性的重要决定因素。我们期望这些结果能够提高 CRISPR 筛选的性能,并为未来对 tracrRNA 工程和 sgRNA 建模的研究提供参考。
gRNA(向导 RNA):Cas9 使用的 CRISPR RNA(crRNA)包含 20 个碱基的原间隔元件和与 tracrRNA 互补的额外核苷酸。反式激活 CRISPR RNA(tracrRNA)与 crRNA 的互补区域杂交。组合的 crRNA 和 tracrRNA 与 Cas9 内切酶相互作用,激活编辑复合物以在目标基因组内的特定位点产生双链断裂。这 2 种天然 RNA 分子可以合成生成,用于基因组编辑实验。IDT 科学家已经修改了这些 RNA 的长度和组成,以优化基因组编辑效率,尤其是在与 CRISPR 核酸酶预先复合并以 RNP 形式递送到细胞时。或者,可以使用单向导 RNA(sgRNA)代替 crRNA 和 tracrRNA 的组合。sgRNA 包含通过发夹状环序列连接的 crRNA 和 tracrRNA 序列。向导 RNA(gRNA)可以是 crRNA:tracrRNA 复合物,也可以只是 sgRNA。
图 1:微注射 Edit-R Cas9 核酸酶 mRNA 和合成 crRNA:tracrRNA 的斑马鱼胚胎具有可检测的编辑事件。仅微注射 Edit-R Cas9 mRNA(+/+ 泳道)或微注射 Edit-R Cas9 mRNA 加靶向 GFP 的 crRNA:tracrRNA(+ 泳道)。注射后 2 天制备基因组 DNA,并使用位于切割位点两侧的引物进行 PCR。使用 T7EI 进行 DNA 错配分析,并在 2% 琼脂糖凝胶上分离样品。使用 ImageJ 软件估计由于基因编辑而导致的插入和缺失百分比 (Indel %),并显示在泳道底部。在所分析的斑马鱼胚胎中,75% 实现了使用靶向 GFP 的 crRNA:tracrRNA 编程的 Cas9 mRNA 的靶向 DNA 切割。
CRISPR(成簇的规律间隔的短回文重复序列)- Cas9 基因组编辑工具源自微生物组的适应性免疫系统,可切割目标 DNA 区域并允许 DNA 自然修复。它也被称为“RGENs”(RNA 引导的工程化核酸酶),因为它由 gRNA(向导 RNA)和 Cas9 核酸酶组成。该技术为精确操作基因组提供了更简单、更有效的方法。gRNA 由 crRNA 和 tracrRNA 组成。crRNA 具有 20 nt 的靶标互补序列,而 tracrRNA 具有 Cas9 结合所需的识别序列(图 1)。
图 1. Alt-RTM CRISPR-Cas9 系统核糖核蛋白的表现优于其他瞬时 CRISPR-Cas9 编辑方法。人类、小鼠或大鼠的 Alt-R CRISPR HPRT 对照 crRNA 与 Alt-R CRISPR-Cas9 tracrRNA 复合。将所得复合物与 Cas9 表达质粒、Cas9 mRNA 或 Cas9 RNP(包含与 crRNA 和 tracrRNA 预复合的 Alt-R Sp Cas9 核酸酶 3NLS)一起转染到人类 (HEK-293)、小鼠 (Hepa1- 6) 或大鼠 (RG2) 细胞系中。使用 T7EI 测定法进行的突变检测表明,Alt-R CRISPR-Cas9 RNP 的表现优于其他瞬时 Cas9 表达方法,并且与稳定表达 S. pyogenes Cas9 的参考 HEK-293–Cas9 细胞的表现相当。
建立了工作流程后,我们随后使用脉冲激光诱导冲击波法将 RNP 直接递送到完整的烟草叶片细胞中,这比原生质体或受精卵更容易制备和处理。我们引入了一个预组装的 RNP,它包含 HiFi Cas9 蛋白、crispr RNA (crRNA) 和 ATTO-550 标记的反式激活 crispr RNA (tracrRNA),靶向烟草 PDS 或 ADF 基因。荧光 tracrRNA 允许直接筛选转染细胞,因此不需要选择标记基因(图 2A')。样本大小和实验设置与上面描述的 DsRed 转染相同(图 1A、B)。根据我们的观察,ATTO-550 荧光在激光处理后 24 小时开始变得可见,在转染后 48 小时达到最大值。根据制造商的说法,RNP 复合物的活性最长为 72 小时。