成簇的规则间隔短回文重复序列 (CRISPR)/CRISPR 相关 (Cas) 系统通过使用 CRISPR RNA (crRNA) 引导入侵核酸的沉默,为细菌和古细菌提供针对病毒和质粒的适应性免疫。我们在此表明,在这些系统的一个子集中,与反式激活 crRNA (tracrRNA) 碱基配对的成熟 crRNA 形成双 RNA 结构,该结构指导 CRISPR 相关蛋白 Cas9 在靶 DNA 中引入双链 (ds) 断裂。在与 crRNA 引导序列互补的位点,Cas9 HNH 核酸酶结构域切割互补链,而 Cas9 RuvC 样结构域切割非互补链。当双 tracrRNA:crRNA 被设计为单 RNA 嵌合体时,它还会指导序列特异性 Cas9 dsDNA 切割。我们的研究揭示了一个使用双 RNA 进行位点特异性 DNA 切割的核酸内切酶家族,并强调了利用该系统进行 RNA 可编程基因组编辑的潜力。B
摘要:利用 CRISPR/Cas 系统组件的基因组编辑方法已广泛应用于分子生物学、基础医学和基因工程。一种有前途的方法是通过修改基于 CRISPR/Cas 的基因组编辑系统的组件来提高其效率和特异性。在这里,我们设计并化学合成了含有修饰核苷酸(2'-O-甲基、2'-氟、LNA — 锁定核酸)或在某些位置含有脱氧核糖核苷酸的向导 RNA(crRNA、tracrRNA 和 sgRNA)。我们比较了它们对核酸酶消化的抵抗力,并检查了由这些修饰向导 RNA 引导的 CRISPR/Cas9 系统的 DNA 切割效率。用 2'-氟修饰或 LNA 核苷酸替换核糖核苷酸增加了 crRNA 的寿命,而其他类型的修饰不会改变它们的核酸酶抗性。 crRNA 或 tracrRNA 的修饰可保持 CRISPR/Cas9 系统的有效性。否则,具有修饰 sgRNA 的 CRISPR/Cas9 系统会显著降低 DNA 切割有效性。2'-氟修饰 crRNA 的系统 DNA 切割动力学常数较高。crRNA 的 2'-修饰还可降低体外 dsDNA 切割的脱靶效应。
传统的诊断工具不足以检测和应对大流行病和复杂的慢性疾病。crispr是原核生物中的自适应免疫系统,是新技术的永无止境的来源,提供了新的解决方案。在这里,我们将CRISPR发现转换为创新的RNA检测和疾病诊断的记录平台。我们发现,促进CRISPR-CAS9系统中CRISPR RNA处理和成熟的tracrocrna也可以介导源自宿主细胞转录本的非典型CRISPR RNA(NCRRRNA)的产生。我们的ncrrna Discovery启发了重编程的tracrrnas(RPTR)的工程,该工程将任何利益的存在与DNA靶向靶向不同的CAS9直系同源物,从而创建了可多发性诊断平台称为Leopard(Leverage toveraging tracrrrnas和tharge tracrrrnas和target DNAS for-targe dnas for-tartarge dnas for-ty-targe dnas)。我们将tracrrna的重编程扩展到涉及dsDNA的cas12核酸酶,从而产生puma平台(可编程的tracrRNA解锁了原始的基序 - 通过cas12核酸酶对核糖核酸的独立检测)。最后,我们将RPTR的概念从体外应用到细胞上下文,并建立了用户定义的RNA记录平台Tiger(通过基因编码的记录推断出的RNA)解决了在单细胞水平上记录转录历史事件的挑战。
成簇的规则间隔短回文重复序列 (CRISPR)/CRISPR 相关 (Cas) 系统通过使用 CRISPR RNA (crRNA) 引导入侵核酸的沉默,为细菌和古细菌提供针对病毒和质粒的适应性免疫。我们在此表明,在这些系统的一个子集中,与反式激活 crRNA (tracrRNA) 碱基配对的成熟 crRNA 形成双 RNA 结构,该结构指导 CRISPR 相关蛋白 Cas9 在靶 DNA 中引入双链 (ds) 断裂。在与 crRNA 引导序列互补的位点,Cas9 HNH 核酸酶结构域切割互补链,而 Cas9 RuvC 样结构域切割非互补链。当双 tracrRNA:crRNA 被设计为单 RNA 嵌合体时,它还会指导序列特异性 Cas9 dsDNA 切割。我们的研究揭示了一个使用双 RNA 进行位点特异性 DNA 切割的核酸内切酶家族,并强调了利用该系统进行 RNA 可编程基因组编辑的潜力。B
以下是使用 DharmaFECT™ 1-4 转染试剂(目录号 T-2001、T-2002、T-2003、T-2004)将合成向导 RNA 转染到表达 Cas9 的培养哺乳动物细胞中的简化方案。合成向导 RNA 可以是合成的单向导 RNA,也可以是与 tracrRNA 复合的合成 crRNA。适用于完成细胞系优化后使用。有关完整详细信息以及优化指南,请参阅技术手册。
图3。CRISPR/CAS9系统机制6。a)外国DNA序列的破坏。在反对病毒和血浆的斗争中,CRRNA识别出异物DNA的原始探针系列,并与近距离PAM系列有关。tracra改善了CRRA与相应的DNA序列的结合,从而通过与Cas9核的关系触发了双码分裂对CRRA。双重婚礼师特定于该地区,如黑色箭头所示,PAM阵列发生在3个基对上方。b)crıspr / cas系统识别基因组DNA中的靶序列的GRNA(Kimre of CrRNA和Trocrocrna的Kimre),具有相邻的PAM序列,并通过CAS9的复杂形成和诱导靶DSB的复杂形成而激活。下一个DNA修复可用于以后编辑基因组。
图 2:使用荧光 Cas9 mRNA 富集基因敲除 A. 对与 mKate2 Cas9 mRNA 和阳性对照 PPIB crRNA:tracrRNA 共电穿孔并根据 mKate2 荧光进行分选的 K-562 细胞群进行错配检测分析。B. 在次优和最优脂质转染条件下,EGFP Cas9 mRNA 分选的 U2OS 细胞群的 FACS 数据。C. 对 EGFP Cas9 mRNA 分选的 U2OS 细胞群进行错配检测分析
CRISPR (clustered, regularly interspaced, short palindromic repeats) 是一种来自细菌降解入侵的病毒 DNA 或其 他外源 DNA 的免疫机制。在该机制中, Cas 蛋白( CRISP‐associated protein )含有两个核酸酶结构域,可以 分别切割两条 DNA 链。一旦与 crRNA ( CRISPR RNA )和 tracrRNA 结合形成复合物, Cas 蛋白中的核酸酶即 可对与复合物结合的 DNA 进行切割。切割后 DNA 双链断裂从而使入侵的外源 DNA 降解。
此方案是使用已停产的 Cas9 蛋白版本 (Alt-R Sp Cas9 Nuclease 3NLS) 开发的。目前可用的产品 (Alt-R Cas9 Nuclease V3) 具有改进的 NLS,应以相同的体积和浓度直接替换到此方案中。IDT 建议使用 Alt-R™ Sp Cas9 Nuclease V3 与 Alt-R CRISPR-Cas9 crRNA 和 tracrRNA 结合使用,以生成核糖核蛋白编辑复合物,从而在大多数目标位点上实现高编辑效率。查看 Alt-R CRISPR-Cas9 用户指南,了解如何将核糖核蛋白转染哺乳动物细胞系(可在 www.idtdna.com/CRISPR 上找到)。
CRISPR-Cas9 如何工作?CRISPR-Cas9 系统由一个短的非编码 gRNA 组成,该 gRNA 具有两个分子成分:靶向特异性 CRISPR RNA (crRNA) 和辅助反式激活 crRNA (tracrRNA)。在基因编辑研究中,这些 RNA 通常连接成称为单向导 RNA (sgRNA) 的长结构。gRNA 单元引导 Cas9 核酸酶到达特定基因组位点,Cas9 核酸酶在特定基因组靶序列处诱导双链断裂。在 CRISPR-Cas9 诱导的 DNA 切割后,双链断裂可以通过细胞修复机制使用非同源末端连接或同源定向修复机制进行修复(图 2)。