摘要 — 可再生和分布式能源资源的大规模整合增加了能源价值链各个层面对灵活性的需求。储能系统被视为灵活性的主要来源。它们有助于维持安全可靠的电网运行。问题是这些技术是资本密集型的,因此需要新的算法来实现套利,同时确保财务可行性。为此,在本研究中,我们开发了一种基于约束深度 Q 学习的竞价算法,以确定日前电力市场中的最佳竞价策略。所提出的算法确保符合储能系统约束。它将不完善但相当准确的 24 小时前价格预测数据作为输入,并返回最佳竞价策略作为输出。数值结果和敏感性分析表明,所提出的算法有效地包含了价格预测不确定性的影响,以保证财务可行性。索引术语 — 储能、能源套利、深度强化学习、深度 Q 网络、日前电力市场。
* 本文表达的观点不一定反映国际货币基金组织、其管理层或执行董事的观点。作者要感谢 Viral Acharya、Ananthakrishnan Prasad、Helge Berger、Darrell Duffie、Charles Goodhart、Robin Greenwood、Lawrence Goulder、Emmanuele Massetti、Robert Pindyck、Rick van der Ploeg、James Roaf、Suphachol Suphachalasai、Rupert Way 和 Johannes Wiegand 提出的有益建议。非常感谢欧洲研究理事会 (ERC) 根据 ERC 高级资助计划(资助协议编号 885552 投资者和气候变化)为本研究提供的资助。我们感谢 Asset Resolution 提供其数据访问权限。我们感谢阿姆斯特丹自由大学、阿姆斯特丹大学、荷兰中央银行、国际货币基金组织、牛津大学马丁学院新经济思维研究所、富达投资、气候政策倡议、世界资源研究所和货币监理署研讨会的参与者提供的反馈。我们还感谢可持续资本会议、康奈尔大学 ESG 投资会议、斯坦福大学经济系气候金融创新与政策挑战会议、欧洲中央银行财政政策与气候变化研讨会以及斯坦福大学商学院和斯坦福大学杜尔可持续发展学院环境可持续性政治经济学会议的参与者提供的评论。我们要感谢 Moritz Baer、牛津可持续金融小组环境压力测试和情景计划 (ESTS) 和 2° 投资倡议提供的宝贵研究支持。我们还要感谢陈刘敏、肖彦哲,尤其是 Rudy Tanin 提供的出色研究协助。可以在 https://greatcarbonarbitrage.com 找到计算工具和额外分析。
摘要 — 本文提出了一种结合监督学习和动态规划的新型储能价格套利算法。所提出的方法使用神经网络直接预测不同储能充电状态水平下的机会成本,然后将预测的机会成本输入基于模型的套利控制算法以做出最佳决策。我们使用价格数据和动态规划算法生成历史最优机会价值函数,然后将其作为基本事实并以历史价格作为预测因子来训练机会价值函数预测模型。在使用不同储能模型和纽约州价格数据的案例研究中,我们的方法与完美预见相比实现了 65% 至 90% 的利润,这大大优于现有的基于模型和基于学习的方法。在保证高盈利能力的同时,该算法也是轻量级的,可以以最小的计算成本进行训练和实施。我们的结果还表明,学习到的预测模型具有出色的可转移性。使用一个地区的价格数据训练的预测模型在其他地区测试时也能提供良好的套利结果。索引词 — 能源存储;深度学习;电力系统经济学。I. 引言
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要 背景 PD-1/PD-L1通路导致肿瘤抗原的丢失和CD8+T细胞的耗竭是肿瘤免疫逃逸的重要因素,近年来,中医药在肿瘤治疗中的研究日益增多,环黄芪醇(CAG)是黄芪中的有效活性分子,具有抗病毒、抗衰老、抗炎等作用,但其抗肿瘤作用及机制尚不明确。方法 在MC38和CT26小鼠移植瘤模型中探究CAG的抗肿瘤作用,通过单细胞多组学测序进一步分析CAG的抗肿瘤作用,利用靶标反应可及性分析技术寻找CAG的靶蛋白,随后利用共聚焦显微镜、免疫共沉淀和突变质粒转染等技术探讨CAG的抗肿瘤机制。最后,研究了CAG与PD-1抗体在小鼠或类器官中的联合抗肿瘤作用。结果我们发现CAG能有效抑制体内肿瘤的生长,我们的单细胞多组学图谱显示CAG促进肿瘤细胞表面抗原的呈递,并以增强CD8+T细胞的杀伤功能为特征。在机制上,CAG与其靶蛋白组织蛋白酶B结合,进而抑制主要组织相容性复合体I(MHC-I)的溶酶体降解并促进MHC-I聚集到细胞膜上,增强肿瘤抗原的呈递。同时,CAG与PD-1抗体的联合使用有效增强了异种移植小鼠和结直肠癌类器官中CD8+T细胞的肿瘤杀伤能力。结论我们的数据首次报道了组织蛋白酶B下调赋予抗肿瘤免疫力,阐明了天然产物CAG的抗肿瘤机制。
摘要:基于规则的微电网调度策略在过去二十年中受到了广泛关注。然而,最近的大量文献已确凿地表明,在优化微电网规模的同时,优化运营调度具有诸多好处。这通常被称为微电网设计和调度协同优化 (MGDCO)。然而,据可查明,文献中所有现有的 MGDCO 模型都考虑了 24 小时解析的日前时间范围,以实现相关的最佳能源调度过程。也就是说,在更广泛的相关文献中,通常没有关于多日时间范围内的智能、前瞻性能源调度策略。为此,本文介绍了一种新颖的 MGDCO 建模框架,该框架将基于套利感知线性规划的多日能源调度策略集成到基于元启发式的标准微电网投资规划流程中。重要的是,该模型通过生成考虑三天内情景的最佳调度解决方案,有效地延长了微电网投资规划问题中主流能源调度优化的时间范围。基于从测试案例微电网获得的数值模拟结果,验证了所提出的基于优化的调度策略在微电网规模确定过程中的有效性,同时保留了计算的可处理性。具体而言,将使用制定的 72 小时调度策略的所提出的投资规划框架与照常的 MGDCO 方法进行比较,结果表明它可以将微电网的全寿命成本降低高达 8%。所提出方法的优异性能在很大程度上可归因于有效利用了电表后锂离子电池存储,从而提高了整体系统的灵活性。
摘要 — 混合光伏电站 (HPP) 将光伏 (PV) 电站与电池储能系统 (BESS) 结合在一起,美国能源部认为这是朝着可再生能源发电厂未来迈出的有希望的一步。当可再生能源渗透率达到相当高的水平时,混合光伏电站可以作为可控热电厂参与未来电力市场的竞标。本研究提出了一种 HPP 的竞标和 BESS 调度模型。稳健优化 (RO) 技术已被用来识别竞标过程中不确定性的最坏情况。为了解决单级 RO 过于保守的问题,我们通过两级 RO 公式将 BESS 套利计划和 PV 容量固定分离。通过比较单级 RO 和两级 RO 的输出,两级 RO 以更积极的方式进行竞标和调度,从而增加了 HPP 的收入。此外,我们的模型还考虑了发电不足的惩罚,以便可以根据潜在的发电不足惩罚调整日前竞价决策和套利计划。由于所提出的模型是非凸的并且包含多个阶段,因此将列和约束生成 (C&CG) 算法应用于该模型作为解决方案。与案例研究中最先进的单阶段竞价方法相比,所提出的模型表现出更好的经济性能。
机器学习技术最近已成为检测金融市场模式的常态。但是,仅依靠机器学习算法进行决策可能会产生负面影响,尤其是在金融等关键领域。另一方面,众所周知,将数据转化为可操作的见解即使对于经验丰富的从业者来说也是一项挑战,尤其是在金融界。鉴于这些令人信服的理由,这项工作提出了一种由可解释的人工智能技术驱动的机器学习方法,该方法集成到统计套利交易管道中。具体来说,我们提出了三种方法来丢弃与预测任务无关的特征。我们对标准普尔 500 指数成分股的历史数据评估了这些方法,旨在不仅提高股票层面的预测性能,而且提高股票集层面的整体预测性能。我们的分析表明,包含此类特征选择方法的交易策略通过提供预测信号来改善投资组合的表现,这些预测信号的信息内容足够,并且比嵌入整个特征集中的信号噪音更小。通过进行深入的风险回报分析,我们表明,由可解释的人工智能驱动的拟议交易策略优于被视为基线的高度竞争交易策略。
摘要:电池储能系统 (BESS) 在消除可再生能源发电相关的不确定性、维持电网稳定性和提高灵活性方面发挥着关键作用。本文使用 BESS 同时提供能源套利 (EA) 和频率调节 (FR) 服务,以在物理约束范围内最大化其总收益。EA 和 FR 操作在不同的时间尺度上进行。多时间尺度问题被表述为两个嵌套的马尔可夫决策过程 (MDP) 子模型。该问题是一个复杂的决策问题,具有大量高维数据和不确定性(例如电价)。因此,提出了一种新颖的协同优化方案来处理多时间尺度问题,并协调 EA 和 FR 服务。使用三重深度确定性策略梯度和探索噪声衰减 (TDD-ND) 方法在每个时间尺度上获得最佳策略。使用来自美国 PJM 监管市场的实时电价和监管信号数据进行模拟。模拟结果表明,所提出的方法比文献中研究的其他策略表现更好。
摘要:电池储能系统 (BESS) 在消除可再生能源发电相关的不确定性、维持电网稳定性和提高灵活性方面发挥着关键作用。本文使用 BESS 同时提供能源套利 (EA) 和频率调节 (FR) 服务,以在物理约束范围内最大化其总收益。EA 和 FR 操作在不同的时间尺度上进行。多时间尺度问题被表述为两个嵌套的马尔可夫决策过程 (MDP) 子模型。该问题是一个复杂的决策问题,具有大量高维数据和不确定性(例如电价)。因此,提出了一种新颖的协同优化方案来处理多时间尺度问题,并协调 EA 和 FR 服务。使用三重深度确定性策略梯度和探索噪声衰减 (TDD-ND) 方法在每个时间尺度上获得最佳策略。使用来自美国 PJM 监管市场的实时电价和监管信号数据进行模拟。模拟结果表明,所提出的方法比文献中研究的其他策略表现更好。