摘要 襟翼轨道整流罩是每架现代商用飞机的常见功能。在最近的发展中,人们已经通过复杂的空气动力学设计做了很多工作来减少整流罩阻力。但是,始终存在显著的寄生阻力,在巡航期间的高空速下尤其明显,而巡航阶段不需要任何襟翼轨道启动,因此整流罩是部分寄生阻力和不必要的燃料消耗的原因。因此,避免这种整流罩阻力可以改善飞机的运营成本,并由于燃料消耗减少而增加有效载荷。由于在收起状态下,襟翼负载与需要坚硬、坚固且体积庞大的襟翼支撑的最后进近配置相比最小,因此在巡航期间,一个“较弱”和较小的机构和襟翼支撑系统就足够了。本论文介绍了如何设计集成襟翼轨道机构的基本概念,将其安装在襟翼向上位置的机翼边条中,同时满足气动襟翼设置要求。考虑了各种现实约束。该项目没有采用纯理论推理,而是选择了务实的实践方法。结果大多是通过直观和实验性的施工工作获得的,同时始终考虑到专业背景和项目应用的要求。前三章代表了学期论文
我们的长期愿景是实现有效的,常规的,系统范围的围栏管理,到2050年,将气候影响和经济权衡纳入。这将需要在研发活动上进行持续投资,并且进步需要适当的资金的可用性。到2030年,研究界必须继续评估并了解低发动机技术和新型的可持续航空燃料(SAF)配方的潜在缩小减少益处。这将为决策者和运营商提供有关如何最好地在整个车队中采用这些措施的方法,因为目前的研究表明,只有一小部分航班会导致大多数污染物引起的变暖。此外,我们必须展示技术和预测工具,以实现可接受的信心,以考虑经济和运营权衡。到2040年,假定已经证明,验证了模型保真度和操作决策支持工具,并在某种程度上使用了来管理围栏cirrar cirrus气候影响。2050年愿景和临时目标需要有效,互补和协调的研究工作。
量子信息,量子计算和量子技术的兴起的石头。早期的纠缠量子纠缠的概念于1935年5月由爱因斯坦,鲍里斯·波多尔斯基和内森·罗森(Nathan Rosen)揭示,他们当时都在高级研究研究所。他们的开创性论文:“可以将量子力学描述视为现实的量子力学描述吗?”,深入研究了新颖的想法。10在有影响力的工作中,后来被称为EPR纸,三人调查了一对零食,故意制备了分离,远远超过了其相互作用的范围,并且总体总数为零。他们的探索揭示了一个困境:在描述具有波浪函数的物理系统时,区域,分离性和完整性之间存在固有的不一致性。
使用移动电源拖车,部分电池被转移到拖车上。这些电池可以独立于拖拉机充电。通过连接拖车,能量可以在行驶过程中从拖车转移到拖拉机。这增加了能源管理的灵活性。为了展示这一概念的优势,我们将“XXL 电池拖拉机”的方法(大型电池放置在拖拉机上)与“移动电源拖车”的概念(电池在拖拉机和两个拖车之间分开)进行了比较。
摘要 - 控制优化为航空立即减少其气候影响提供了一种有效且具有成本效益的方式。开源优化,其中在先前的工作中已经介绍了基于气象开放数据的关节和排放效应。但是,先前的研究忽略了使用预测数据的重要性,而不是后处理的重新分析数据。为了实现估计优化,需要在飞行计划阶段以足够的质量提供预测数据,以便执行优化。在本文中,使用预测和重新分析数据实现和应用了完全开放的非线性最佳控制飞行优化。在分析中使用了来自Opensky的120天(175.440航班)的飞行数据。我们表明,与最新的预测(1小时lookahead Time)相比,具有较大的LookAhead时间(最多12小时)的预测同样有效,以进行关注功能优化,同样高准确性。但是,与更准确的后处理重新分析数据相比,形成的预测关闭尾巴存在很大差异。这项研究表明,在我们实际实施概括的最佳飞行计划之前,还有很长的路要走。关键字 - 可持续性,缩进,开放式,优化,Opensky,飞机监视数据
抽象的先前工作表明,尽管飞机冷凝径(捕捞尾巴)对气候的净效应正在变暖,但每米cont虫的能量强迫的确切幅度仍然不确定。在本文中,我们探讨了拉格朗日概要模型(COCIP)在识别具有高尾尾能量强迫的战争段时的技能。我们发现,技能仅大于气候预测,甚至考虑了天气场和模型参数的不确定性。我们通过使用欧洲中等天气预报中心(ECMWF)的集合ERA5天气再分析来估计由于湿度而导致的不确定性,作为蒙特卡洛投入到cocip。我们通过迫使在巡航高度上进行的原位湿度测量值匹配匹配ERA5湿度数据的不偏见和纠正不分散。我们将使用一个集合成员之一计算出的Cocip能量强迫估计值作为地面真理的代理,并报告COCIP在识别具有较大正面代理能量强迫的细分市场方面的技能。我们通过使用与文献一致的不确定性分布中绘制的COCIP模型参数进行蒙特卡洛模拟,进一步估计COCIP中模型参数引起的不确定性。当cocip输出在季节中平均以形成气候预测时,预测代理的技能为44%,而cocip cocip输出的技能为84%。如果这些结果延续到了真实的(未知)的围栏EF,则表明能量强迫预测可以减少潜在的避免避免途径调整的数量2倍,从而减少避免避孕的成本和燃料的影响。
摘要。在全球范围内,航空的排放会通过复杂的过程影响地球的气候。捕捉卷曲和二氧化碳排放是导致航空辐射强迫气候的最大因素。概要卷曲,就像天然的卷云一样,会影响地球的气候。即使进行了广泛的研究,与其他航空对气候的影响相比,气候影响的重要性仍然存在主要的不确定性,需要进一步研究。概括的卷心包括线性缩小和相关的cirrus云;这些特征在于冰颗粒特性,例如大小,浓度,混合,灭绝,冰水含量,光学深度,几何深度和云覆盖率。由于预计空气流通量的增加,捕捉片的气候影响可能会加剧。全球围栏cirrus的辐射强迫有可能达到三倍,并且可以达到160 mwm - 2到2050年。此预测基于空气流通的预期增长,并可能转移到更高的高度。缩尾卷心的未来气候影响受到空气流动中的幅度和地理传播,燃料效率的进步,使用替代燃料的影响以及气候变化对背景大气层的影响的因素所影响。这项研究回顾了影响围栏形成以及围栏和围栏卷心的微物理过程。研究突出了知识和不确定性的差距,同时概述了未来的研究重点。更重要的是,该研究还探讨了全球观察数据集,以进行关注,当前分析和未来的预测,并将有助于评估与各种缓解策略相关的有效性和权衡。
航空的气候影响是由直接飞机排放产生的,以及由于这些排放而产生的大气影响。二氧化碳(CO 2)和水蒸气(H 2 O)是喷气燃料燃烧的天然副产物,具有直接的变暖作用。其他排放(如烟灰颗粒或氮氧化物(无X))通过引起地球大气中的过程而具有间接效果,包括通过烟灰颗粒吸收辐射的直接变暖,以及冰晶和臭氧的形成。CO 2以外的排放效应及其由此产生的气候影响通常被称为航空的非CO 2效应。据信,这些非CO 2效应的气候变化的最大贡献可能是在对流层上部创造持续的围栏,其次是无X及其间接的大气效应。
传统的财产和意外险风险评估和定价方法正面临重大挑战。2019 年至 2024 年,商业(7.8%)和个人(5.4%)财产和意外险保费的复合年增长率 (CAGR) 有所上升,超过了同期全球 GDP 2.3% 的复合年增长率。1 2 3 然而,推动增长的是费率上涨,而不是保单销售。虽然财产和意外险保费有所增长,但承保却举步维艰。在此期间,综合比率突破 100%,因为损失超过了新业务保费。在消费者期望很高的情况下,传统做法现在无法应对气候变化、网络风险和流动性转变等市场转型。过时的承保引擎需要注入准确性、效率和透明度的技术来恢复盈利能力。此外,商业险保费在 2022 年首次超过个人险保费,而且这一趋势有望持续下去(图 1)。1