为期三天的培训汇集了来自该地区5个国家的15名参与者(埃及,伊朗伊斯兰共和国,摩洛哥,巴基斯坦和苏丹),包括来自7所大学的儿科高级教授,卫生部的工作人员和国家办公室。根据区域办公室开发的IMCI职前教育的评估指南,其目的是在评估IMCI服务前教育方面在该地区建立能力。多年来,该地区将IMCI引入其教学计划的教学机构数量一直在增加,这增加了评估教学过程和学生成果的需求
异国情调的自由度,例如超子,暗物质和脱糊状的夸克物质,在紧凑型物体(如中子恒星)的理论模型中引起了显着的关注,如中子恒星,这些恒星具有极高的密集核心。我们的目标是在高密度环境中探索这些颗粒的形成,同时保持中子恒星的稳定性并满足中子恒星的观察性约束。我们采用相对论密度的功能方法,用于辐射阶段,并结合了超子和玻色子暗物质,通过相过渡到非本地nambu - jona-lasinio模型与颜色超导性描述。我们评估了模型与观察数据的兼容性,并使用贝叶斯分析来限制其参数。
扩散模型在产生各种自然分布的高分辨率,逼真的图像方面取得了巨大的成功。但是,他们的性能在很大程度上依赖于高质量的培训数据,这使得从损坏的样本中学习有意义的分布变得具有挑战性。此限制限制了它们在稀缺或昂贵的科学领域中的适用性。在这项工作中,我们引入了DeNoising评分蒸馏(DSD),这是一种出奇的有效和新颖的方法,用于训练低质量数据的高质量生成模型。DSD首先预修了一个扩散模型,专门针对嘈杂,损坏的样品,然后将其提炼成能够生产精制,干净的输出的单步生成器。传统上将得分蒸馏视为加速扩散模型的一种方法,但我们表明它也可以显着提高样本质量,尤其是从退化的教师模型开始时。在不同的噪声水平和数据集中,DSD始终提高生成性能 - 我们在图中总结了我们的经验证据1。此外,我们提供了理论见解,表明在线性模型设置中,DSD识别了干净的数据分散协方差矩阵的特征空间,并隐含地正规化了生成器。此透视图将蒸馏片重新升级为效率的工具,而且是改善生成模型的机制,尤其是在低质量的数据设置中。
先前的方法主要集中在适应性免疫系统上,即免疫系统的分支“记住”以前的威胁,并在再次遇到时发动了特定的攻击。人体还具有先天的免疫分支,长期以来,该分支被认为是免疫系统的一线通用攻击部门,没有能力记住事先袭击或在重新收录时做出不同的反应。
对神经反馈培训研究和相关临床应用的一个重大挑战是参与者在训练过程中学习诱导特定大脑模式的困难。在这里,我们在基于fMRI的解码神经反馈(DECNEF)的背景下解决了这个问题。可以说,用于构建解码器的数据与用于神经反馈训练的数据之间的差异,例如数据分布和实验环境的差异,可能是上述参与者困难的原因。我们使用标准机器学习算法开发了一个共同适应程序。首先,我们使用以前的Decnef数据集通过模拟测试了该过程。该过程涉及一种自适应解码器算法,该算法根据其在神经反馈试验中的预测中实时更新。结果表明,在神经反馈训练期间,解码器性能有了显着改善,从而增强了学习曲线。然后,我们在Decnef培训程序中收集了实时fMRI数据,以提供概念证据证据,表明共同适应增强了参与者在训练过程中诱导目标状态的能力。因此,通过共同适应的个性化解码器可以提高Decnef培训方案的精度和可靠性,以针对特定的大脑表示,并在转化研究中产生后果。这些工具可公开提供给科学界。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
听起来很容易跑步!舒适,放松的步伐,您不会太努力地推动自己。通常被描述为“对话”,因为您应该能够以完整的句子说话而不会喘着气。易于跑步对于建立耐力和舒适性至关重要 - 不要在上面跳过!
在协作机器人技术和智能系统中,人类姿势识别的准确性显着影响人机相互作用的自然性和安全性,将其确立为自动化系统的核心技术(Hernández等,2021; Liu and Wang和Wang,2021)。随着深度学习和计算机视觉的快速发展,姿势识别应用已超越机器人控制和监测,包括增强现实,体育分析和智能监视(Fan等,2022; Desmarais等,2021)。此外,人类姿势分析涵盖了外部传感技术,例如基于视觉的系统和内部传感技术,例如基于可穿戴传感器的方法。这两个范式具有互补的优势,并可以实现广泛的应用。
抽象目标。通常,由于单个特质和脑电图的非平稳信号属性(EEG),使用用户和会话特异性数据对脑委员会接口(BCI)进行校准。因此,BCIS经历耗时的被动训练阶段是正常的,以防止用户直接操作它们。在这项研究中,我们以逐步的方式系统地减少训练数据集,以最终达到一种无校准的方法,用于代码调制的视觉诱发电位(CVEP)基于BCI,以完全消除繁琐的训练阶段。方法。在广泛的离线分析中,我们将复杂的编码模型与传统的事件相关电位(ERP)技术进行了比较。我们以标准方式校准编码模型,数据仅限于单个类,同时概括所有其他数据,而没有任何数据。此外,我们研究了在线环境中零培训CVEP BCI的可行性。主要结果。通过采用编码模型,可以大大减少培训数据,同时保持分类性能以及ERP方法的解释差异。只有一个类别的数据,甚至根本没有数据,它仍然显示出出色的性能。此外,零训练CVEP BCI在在线拼写任务中达到了高通信率,证明了其可行性用于实际使用。意义。这使我们能够完全跳过训练阶段,并将所有宝贵的时间用于直接操作。迄今为止,这是该场中最快的零训练CVEP BCI,仅使用几个非侵入性水基EEG电极而无需校准而无需校准。这可以最大程度地减少会话时间,并为实用的插件BCI打开了新的令人兴奋的方向。从根本上讲,这些结果验证了所采用的神经编码模型将数据压缩到事件响应中,而没有解释能力的损失与使用完整的ERP作为模板相比。
准确的分子特性预测对于药物发现和计算化学至关重要,促进了有希望的化合物并加速治疗性发育的鉴定。传统的机器学习以高维数据和手动特征工程的速度失败,而现有的深度学习方法可能不会捕获复杂的分子结构,而留下了研究差距。我们引入了深CBN,这是一个新型框架,旨在通过直接从原始数据中捕获复杂的分子表示来增强分子性质预测,从而提高了准确性和效率。我们的方法论结合了卷积神经网络(CNN)和biforter注意机制,同时采用了前向算法和反向传播。该模型分为三个阶段:(1)功能学习,使用CNN从微笑字符串中提取本地特征; (2)注意力完善,通过向前前锋算法增强的Biforter模块捕获全球环境; (3)预测子网调整,通过反向传播进行微调。对基准数据集的评估 - 包括TOX21,BBBP,SIDE,Clintox,Clintox,Bace,HIV和MUV,表明深-CBN达到了近乎完美的ROC-AUC分数,显着超过了最好的State-Art-Art方法。这些发现证明了其在捕获复杂分子模式的有效性,提供了一种强大的工具来加速药物发现过程。