搜索近期量子设备的应用是广泛的。量子机学习被吹捧为对此类设备的潜在利用,尤其是那些无法触及的古典计算机模拟功能的设备。在这项工作中,我们研究了这种应用在生成建模中,重点是一类称为出生机器的量子电路。特别是,我们基于Ising Hamiltonians定义了该类别的子集,并表明在最坏情况下,在基于梯度的训练中遇到的电路无法从经典到乘法误差进行有效地采样。我们的基于梯度的培训方法使用成本功能,称为sindhorn差异和Stein差异,这些差异以前尚未用于基于量子电路的梯度培训,我们还将量子内核引入生成性建模。我们表明,这些方法的表现优于先前的标准方法,该方法使用最大平均差异(MMD)作为成本函数,并以最小的开销来实现这一目标。最后,我们讨论了模型学习硬分布并为“量子学习至高无上”提供正式定义的能力。我们还通过使用生成建模来执行量子电路汇编来体现本文的工作。
巴黎,阿拉米斯项目团队,F-75013,法国巴黎,法国B. Institut du Cerveau et de la Moelle Epini ere, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universit e, Ecole Normale Sup erieure, ENS, Centre MEG-EEG, F-75013, Paris, France e Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104,宾夕法尼亚州宾夕法尼亚大学佩雷曼医学院,美国弗莱尔曼大学神经病学系,19104年,美国G物理与天文学系,艺术与科学学院,宾夕法尼亚大学,宾夕法尼亚大学,宾夕法尼亚大学,宾夕法尼亚大学,宾夕法尼亚大学,19104年,美国电气和系统工程学系,宾夕法尼亚州宾夕法尼亚州,宾夕法尼亚州pr。 19104年,美国I精神病学系,宾夕法尼亚州宾夕法尼亚大学佩雷尔曼医学院,宾夕法尼亚州费城,19104年,美国J Santa Fe Institute,NM,NM,87501,美国,
强化学习算法通常在没有密集,形状良好的奖励功能的情况下挣扎。本质上动机的利用方法通过奖励访问新颖状态或过渡的代理来解决这一限制,但是这些方法在大多数发现的新颖性与下游任务无关的大环境中提供了有限的好处。我们描述了一种使用文本语料库中背景知识来塑造探索的方法。此方法称为Ellm(e xploring at llm s)奖励代理,以实现由促使代理当前状态描述的语言模型所建议的目标。通过利用大规模的语言模型进行预处理,Ellm指导代理人朝着人类善意而有用的行为来实现,而无需在循环中进行人类。我们在手工游戏环境和管家机器人模拟器中评估ELLM,表明经过训练期间,经过ELLM训练的代理在训练过程中具有更好的覆盖范围,并且通常在一系列下游任务上匹配或提高性能。
摘要。基于心理任务的大脑计算机界面(MT-BCIS)允许其用户仅通过使用通过心理任务产生的大脑信号来与外部设备进行交互。虽然MT-BCI有望用于许多应用,但由于缺乏可靠性,它们仍然几乎没有使用外部实验室。MT-BCI要求其用户发展自我调节的特定大脑信号的能力。但是,控制BCI的人类学习过程仍然相对较少了解,以及如何最佳地训练这种能力。尽管他们承诺和成就,但传统的培训计划已被证明是最佳的,并且可以进一步改善。为了优化用户培训并提高BCI绩效,应考虑人为因素。应采用跨学科的方法,以为学习者提供适当和/或自适应培训。在本文中,我们概述了MT -BCI用户培训的现有方法 - 尤其是在环境,说明,反馈和练习方面。我们提出了这些培训方法的分类和分类法,提供有关如何选择最佳方法并确定开放挑战和观点以进一步改善MT-BCI用户培训的指南。
摘要目的:用脑部计算机界面系统对运动皮层激活进行神经反馈训练可以增强中风患者的恢复。在这里,我们提出了一种新方法,该方法训练与运动性能相关的静止状态功能连接,而不是与运动相关的激活。方法:使用神经反馈和源功能连通性分析和视觉反馈,将十个健康受试者和一名中风患者在其手运动区域和其他大脑之间受过训练的α波段连贯性。结果:十分之一的健康受试者中有7个能够在一次疗程中增加手运动皮层和其他大脑其他大脑之间的α波段连贯性。慢性中风的患者学会了增强其受影响的原发性运动皮层的α波段连贯性,该病神经皮层在一个月内应用了一个月。连贯性在靶向运动皮层和α频率中特别增加。这种增加与中风后运动功能的临床有意义且持久的改善有关。结论:这些结果提供了概念证明,即对α波段连贯性的神经反馈训练是可行的,并且在行为上是有用的。意义:该研究提供了证据表明α波段在运动学习中的作用,并可能导致新的康复策略。1简介大脑界面(BCI)的技术可以监测大脑活动和生成有关活动模式特定变化的实时输出。这特别显示了有关感觉运动节奏(SMR)的表明。记录的受试者会收到有关与他/她的努力相关的神经活动的反馈,因此可以学会自愿调节大脑活动(Kamiya,1969)。SMR对应于α和β频率(〜8-30 Hz)中感觉运动皮层中神经元基的活性,这被真实或想象中的运动抑制(Arroyo等,1993; Pfurtscheller等人,2006年)。人类自愿调节SMR的能力导致BCI的发展用于运动替代,即控制假体和机器人设备(Galan等,2008; McFarland等,2008)。BCI技术的最新应用包括通过反馈训练大脑模式。在神经居住中,神经反馈的兴趣主要在于它可能改善脑部病变患者恢复的潜力(Birbaumer等,2007; Daly等,2008)。运动康复的神经反馈主要旨在训练SMR调节(Buch等,2008; Broetz等,2010; Caria等,2011; Ramos-Murguiarlday等,2013),因此可以看作是对运动成像训练的支持(Mattia等人(Mattia等,2012)。
普通的英语摘要背景和研究目标2型糖尿病对人有许多不同的影响,包括随着年龄的增长而增加肌肉“年龄”的速度。这可以显着影响身体健康和功能(例如,力量,耐力,灵活性),并使日常的身体任务更加严重。这称为“身体功能受损”。许多患有2型糖尿病的人也超重或肥胖,这可能会使这些任务变得更加困难。大型研究表明,糖尿病患者的身体机能受损或变得“脆弱”的可能性是没有糖尿病的人的五倍。患有肥胖症的成年人通过改变饮食而减肥的成年人可能会发现其身体功能和健身水平的提高,但也可能看到肌肉和力量的降低。相比,身体活跃和锻炼有助于保持肌肉的强壮,即使没有减肥也是如此。有一类称为SGLT2抑制剂的药物,用于治疗2型糖尿病,这也会导致体重减轻。证据表明,这些药物对新陈代谢具有有益的影响,在某些情况下也可以提高适应性。因此,研究小组认为SGLT2抑制剂将适度改善人们的身体机能,但与运动结合使用可能更大。但是,这在先前的研究中尚未考虑。Dapagliflozin(Forxiga TM)是一种处方的SGLT2抑制剂治疗,用于治疗欧洲2型糖尿病。这项研究的目的是查看Dapagliflozin与适度饮食中的2型糖尿病患者相比,是否可以改善2型糖尿病患者的身体功能,以及如果Dapagliflozin与运动计划结合使用,则影响是否更大。
研究身体性能的神经机制是运动神经科学领域的越来越多的研究重点。Sport is more and more benefiting from and contributing to a greater awareness of concepts such as neuroplasticity (i.e., the structural and functional adaptations in specific brain and spinal circuits), and neuromodulation techniques (i.e., the application of low-level intensity currents to induce polarity-specific changes in neuronal excitability).神经塑性在强度和调节的领域不广泛理解;然而,它从根本上影响了运动员在运动中的运动和表现。理解神经塑性的基本概念可以指导力量训练,这被定义为抗性运动,从而增加了力量能力。要执行多关节运动,大脑必须与合适的肌肉组坐标,以及时执行肌肉收缩。因此,与运动学习有关的力量训练需要在运动皮层中引发的复杂肌内和肌内配位。此外,力量训练会导致中枢神经系统(CNS)(尤其是在运动皮层中)中使用依赖性塑料随时间变化(称为长期增强,Cooke and Bliss,2006)(Hortobagyi等,2021)。广泛接受的是,力量训练需要在培训的早期阶段进行神经适应(Sale,1988; Hortobagyi等,2021)。这一假设的基础是研究表明,训练的初始阶段会导致力产生大量增强,而没有肌肉质量的改变(即结构变化)。特别是,在训练的第一周内,肌肉力量产生的运动单位适应发生(Häkkinen等,1985)。,直到最近,有关力量训练的文献尚未最终确定CNS最负责这些适应的部分。最近的一项灵长类动物研究表明,通过网状脊髓束强度训练引起的脊柱上的脊髓变化与肌肉性能的变化有关(Glover and Baker,2020)。最近的荟萃分析(Siddique等,2020; Hortobagyi等,2021;Gómez-Feria等,2023)强调了一种趋势,趋势趋于同时进行皮质脊髓兴奋性和肌肉力量,并在对肌层降低后的抑制作用后,肌肉力量降低了降低的降低。但是,重要的是要注意,这种趋势根据所选训练方式具有相当程度的异质性(Gómez-Feria等,2023)。迄今为止,鉴于对耐强度训练的神经影响的研究很少,尚不清楚产生大量和持久的神经变化所需的力量训练需要多少。
Constraining human contributions to observed warming since preindustrial 1 Nathan P. Gillett 1 , Megan Kirchmeier-Young 2 , Aurélien Ribes 3 , Hideo Shiogama 4 , Gabi Hegerl 5 , 2 Reto Knutti 6 , Guillaume Gastineau 7 , Jasmin G. John 8 , Lijuan Li 9 , Larissa Nazarenko 10 , Nan 3 Rosenbloom 11,ØyvindSeland 12,Tongwen Wu 13,Seiji Yukimoto 14,Tilo Ziehn 15 4 5 1加拿大气候建模和分析中心,环境与气候变化6加拿大,加拿大,加拿大,不列颠哥伦比亚省维多利亚州,加拿大,加拿大。7 2加拿大加拿大多伦多的环境与气候变化的气候研究部。8 3 CNRM,德卢兹大学,Météo-France,CNRS,Toulouse,法国。9 4日本10号全球环境研究中心,美国国家环境研究所。11 5爱丁堡大学,地球科学学院,爱丁堡,英国。12 6苏黎世Eth,瑞士苏黎世大气与气候科学研究所。13 7 Locean/Institut Pierre Simon Laplace,法国巴黎。14 8 NOAA/OAR/地球物理流体动力学实验室,美国新泽西州普林斯顿。15 9 Lasg,中国北京大气物理研究所。16 10 NASA戈达德太空研究研究所,美国纽约,美国。17 11 NCAR,美国科罗拉多州博尔德。18 12挪威气象学院,挪威奥斯陆。19 13中国气象局北京气候中心,中国北京。20 14日本杜斯库巴气象研究所。21 15 CSIRO海洋和氛围,澳大利亚维多利亚州阿斯彭代尔。22 23的巴黎协定当事方同意举行全球平均温度升高24'以下24'以高于工业化的水平低于2°C,并“追求限制温度25升高到前工业水平高1.5°C的努力”。监视人类26引起的气候强迫对迄今为止的贡献是了解27个目标进步的关键。在这里,我们使用来自检测和归因的气候模型模拟28模型对比项目(DAMIP),以及正则最佳指纹29(ROF),以估计人为强迫在2010 – 2019相对于1. 1850-19的全球温度中,全球30次平均温度在全球30次平均温度中,与1.19的平均温度相比,与1.19的平均温度相比,造成了0.9-1.3°C,相比之下。气体和气溶胶的变化分别为32 1.2 - 1.9°C和-0.7 - -0.1°C,并且自然强迫可忽略不计。33这些结果证明了迄今为止对气候的实质性影响,以及达到巴黎协议目标所需的34行动。35 36在二十年以上,检测和归因技术已被用来识别37人在全球温度变化中的影响,并量化了个人38强迫对观察到的变化的贡献1-3。当事方对巴黎协定4的承诺'持有39的39全球平均温度升高至高于工业前水平的2°C低于2°C,而40
134 # 训练前和训练后 PD 男性比较是较大的 PD 男性与训练后 PD 男性比较的一个较小子集;但是,前一个子集仅包括具有训练前和训练后样本的 PD 患者,以便进行更严格的患者内分析。137 * 使用 138 Mann-Whitney 检验(p 值 > 0.05),所有成对比较均未达到统计显着性水平。每组的值均以平均值和 139 SEM(平均值的标准误差)给出。140
摘要:本研究研究了双任务训练(DTT)在改善脑外伤患者(TBI)患者认知和运动功能方面的功效。认知和运动障碍是TBI的常见后遗症,通常会破坏患者进行日常活动的能力,需要同时进行身体和心理努力。双重任务培训涉及同时执行认知和运动任务,并作为有效的康复策略提出。进行了系统的审查和荟萃分析,包括随机对照试验和关注DTT的TBI患者的观察性研究。结果度量包括改善认知功能(例如注意力,执行功能)和运动性能(例如步态稳定性,平衡)。此外,还评估了双重任务改进到现实世界任务的转移。双任务训练显着改善了认知运动的相互作用,在双重任务条件下,反应时间,任务准确性和步态参数的增强功能明显增强。患者在动态环境中还表现出更好的注意力分配和提高的适应性。重要的是,在随访评估中保持了改善,表明神经塑性作用持久。但是,DTT的功效受到损伤严重性,任务复杂性和训练持续时间等因素的影响。双重任务培训是改善TBI患者认知和运动功能的有效且有希望的干预措施,从而促进了他们重新融入日常生活。未来的研究应探讨最佳任务组合,个性化培训方案和长期结果,以最大程度地提高其临床适用性。