此处介绍的菌株先前是在2016年从ADE土壤和两个不同的普通豆品种的实验中分离出来的,表现出对土壤传播病原体的抗氧体的抗性水平。该实验是在圣保罗大学农业核能中心进行的(22°42'27.60“ S,47°38'41.17” W)(4)。植物,并摇动根以去除松散的粘附土壤。用无菌刷子收集牢固的土壤,并被认为是根际土壤。用于微生物分离,将1 g根际土壤与9 ml盐水溶液(8.5 g L-1 NaCl)混合。串行稀释液(10 -1至10 -6),然后转移到国王中板上(5)。在25°C孵育48小时后,使用条纹板法分离了菌落。从分离株中提取总DNA。
引用这篇文章:Rahul K. Suryawanshi,Taha Y. Taha,Maria McCavitt-Malvido,Ines Silva,Mir M. Khalid,Abdullah M. Syed,Irene P. Chen,Prachi Saldhi OR-GONZALEZ,威尼斯·塞维利塔,阿米莉亚·格里瓦,珍妮·恩格扬,诺亚·库吉玛,特雷莎·阿雷拉诺,阿利亚·巴斯萨尼奇,维多利亚·赫斯,玛丽亚·赫克斯,玛丽亚·谢克拉,劳伦·洛佩兹NA,Lee Spraggon,Charles Y. Chiu&Melanie Ott(2023)。
1肠道疾病,实验室分支,疾病控制与预防中心,亚特兰大,佐治亚州30333,美国; kapsakcj@gmail.com(C.K。); koj1@cdc.gov(P.S.)2国家生物技术信息中心,国家卫生研究院国家医学图书馆,美国贝塞斯达,美国医学博士20894; aprasad@mail.nih.gov(A.P.); Michael.feldgarden@nih.gov(M.F.); klimke@ncbi.nlm.nih.gov(W.K.); souvorov@ncbi.nlm.nih.gov(A.S.)3美国马里兰州20740大学公园食品安全与应用营养中心; narjol.gonzalez-escalona@fda.hhs.gov 4微生物学和免疫学系,医学院卫生科学大学医学院,贝塞斯达,贝塞斯达,20184年,美国; Angela.melton-celsa@usuhs.edu 5橡树岭科学与教育研究所,橡树岭,美国田纳西州37830; odv3@cdc.gov 6丹麦哥本哈根2300号Statens Serum Institut国际Escherichia和Klebsiella Center; fsc@ssi.dk *通信:rlindsey1@cdc.gov†当前地址:Theigan Genomics,Highlands Ranch,CO 80129,美国。•当前地址:Chenega Professional&Technical Services,Chesapeake,VA 23320,美国。
这项研究的目的是评估从土耳其Tulum分离的乳杆菌科的益生菌特性。十种乳杆菌科的菌株。在分类学上识别如下:lactiplantibacillus plantarum subsp。plantarum(6),乳酸乳杆菌(2),乳酸酶乳杆菌(1)和乳酸乳酶casei(1)。评估了它们的益生菌特性,抗菌活性以及对模拟胃肠道状况(例如低pH,胃蛋白酶,胰岛素和胆汁盐)的耐受性。结果表明,10种乳酸细菌菌株具有较高的自动聚集,凝聚和疏水性能。抗生素耐药性和溶血活性确定用于菌株的安全评估。 还检测到表现出高抗菌活性的选定分离株和去除胆固醇的能力。 这些细菌也具有抗氧化活性。 因此,这十种提取的乳酸细菌是有望用作益生菌的潜在候选者。 在这项综合研究中,发现了Plantarum Sm27,L。plantarum S74和L. paracasei Ru39-7具有最好的益生菌特性。 有关从传统发酵的图卢姆奶酪中分离出的乳酸杆菌科的益生菌和功能特性的重要信息,这些乳酸菌株可用作丰富的益生菌细菌来源。 发现可以将益生菌细菌与传统发酵奶酪分离。抗生素耐药性和溶血活性确定用于菌株的安全评估。还检测到表现出高抗菌活性的选定分离株和去除胆固醇的能力。这些细菌也具有抗氧化活性。因此,这十种提取的乳酸细菌是有望用作益生菌的潜在候选者。在这项综合研究中,发现了Plantarum Sm27,L。plantarum S74和L. paracasei Ru39-7具有最好的益生菌特性。有关从传统发酵的图卢姆奶酪中分离出的乳酸杆菌科的益生菌和功能特性的重要信息,这些乳酸菌株可用作丰富的益生菌细菌来源。发现可以将益生菌细菌与传统发酵奶酪分离。
埃博拉病毒是人类和灵长类动物中严重致死性病毒疾病的病毒剂。它们长,丝状,包裹和非细分病毒,属于家族的RNA基因组,属于Fileviridae。埃博拉病毒属由六种不同的物种组成:Bundibugyo,Bombali,Tai Forest(以前是科特迪瓦),雷斯顿,苏丹和扎伊尔,尽管雷斯顿和孟加拉埃博拉病毒并未被认为是人们的疾病。它们是管状病毒体,通常直径为80 nm,长度为800 nm。基因组长约19 kb,由7个线性排列的基因组成,以3'-np-vp35-vp35-vp40-gp-vp30-vp23-vp24-l组成。Zaire Ebolavirus的第一次记录爆发发生在Zaire,1976年。同年,苏丹埃博拉病毒被发现,尽管最初被认为与扎伊尔物种相同。埃博拉病毒主要通过与感染动物的血液,分泌物,器官或其他体液的血液,分泌物,器官或其他体液传播给人类。然后,它通过与感染者的血液或分泌物直接接触,通过人类对人类的传播传播到社区。最初,它通常是在受感染者的家庭和朋友之间传播的。卫生保健工人在治疗埃博拉病人时经常被感染,并且在医院环境中的暴发很常见。通过感染精液传播可在临床恢复后长达七个星期发生。被感染个体的分解物体可以在死亡后3至4天保持感染。埃博拉血血热的孵育期通常为5至20天。感染的临床体征包括发烧,头痛,喉咙痛,关节和肌肉酸痛,腹泻和无力。这是一种高温出血性疾病,病例竞争率在25%至90%之间。在严重的出血热病例中,血管可能会损害血管以及大量的内部和外部出血或出血。Zaire Ebolavirus在所有埃博拉病毒中的病例型率最高。在某些流行病中最多可达90%,在27年内,平均病例死亡率约为83%。扎伊尔埃博拉病毒的暴发比其他任何物种都多。近年来,已经开发出治疗疗法和疫苗,可能会提高患者的存活率。埃博拉疫情继续定期出现;在2022年,宣布了6例扎伊尔埃博拉病毒感染,死亡率为100%。在2022年还报道了164例苏丹埃博拉病毒,死亡率为34%。
摘要:在工业中使用微生物已使(过度)生产各种相结合(例如原代和次级代谢物,蛋白质和酶),这些分量与抗生素,食品,饮料,饮料,化妆品,化妆品,化学药品,化学药品和生物燃料等相关。工业菌株通常是通过常规(非GMO)应变改善策略以及随机筛选和选择获得的。但是,重组DNA技术使通过添加,删除或修改特定基因来改善微生物菌株成为可能。基因工程和基因组编辑等技术有助于工业生产菌株的发展。尽管如此,仍然有重要的空间可以进一步改善应变。在这篇评论中,我们将重点介绍用于开发真菌生产菌株的经典和最新方法,工具和技术,并有可能以工业规模应用。此外,将讨论功能基因组学,转录组学,蛋白质组学和代谢组学的使用以及遗传操纵技术和表达工具的实施。
摘要:船只的淹没表面充当微生物种子库,在海洋栖息地中引入了非土著微生物菌株。这项研究的重点是使用标准技术在尼日利亚拉各斯州的Badagry Lagoon中从水和淹没的油漆船体中分离的细菌的形态,生化和分子表征。对于水样和船体样品,获得的平均细菌密度分别为1.9 x 10 9 cfu/ml和2.03 x 10 4 cfu/g。形态学,生化和分子表征证实了细菌为枯草芽孢杆菌,B。flexus,B。Cereus,B。Cereus,Brevibacillus Agri,Aeromonas unomonas untctata,sciuri葡萄球菌,B。Licheniformis,licheniformis,kurthia gibsoniii and leclercia adecia adecia adecabbbbebylylylya。该研究的结果表明,某些分离株(B. cereus,B。flexus,S。Sciuri和L. adecarboxylata)是致病性的,而其他分离株(Agri和A. punctate)是机会性病原体。本研究中分离出的致病菌株比例大于非致病菌株。doi:https://dx.doi.org/10.4314/jasem.v27i7.34 Open Access策略:Jasem发表的所有文章都是由AJOL提供的PKP的开放式访问文章。这些文章在出版后立即在全球范围内发布。不需要特别的许可才能重用Jasem发表的全部或部分文章,包括板,数字和表。版权策略:©2023作者。本文是根据Creative Commons Attribution 4.0 International(CC-By-4.0)许可证的条款和条件分发的开放式文章。(2023)。J. Appl。SCI。SCI。,只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Obidi,O。F; Soyinka,O。O; Kamoru,T。A.从水和尼日利亚拉各斯州巴达格泻湖的水和淹没的油漆船体中分离出的细菌的形态,生化和分子特征。环境。管理。27(7)1579-1589日期:收到:2023年6月12日;修订:2023年6月21日;接受:2023年7月4日出版:2023年7月30日关键字:油漆;船体; Badagry泻湖;分子表征;生物污染微生物由于其无处不在的性质在各种环境中自然可用。这些微生物通过使用周围环境中的营养来生长和繁殖而生长。在其他时候,微生物与周围不同种类的微生物形成复杂的关联。该关联有助于提供单个微生物无法综合的代谢产品。一个例子是为协会的厌氧成员创建厌氧微环境。在其他时候,微生物通过合成保护抗菌剂的保护性基质来形成生物膜。海洋菌群的侵略性在适应环境条件变化时会增加。已经发现,污染水的许多材料的腐蚀速率是相对干净
金黄色葡萄球菌是一种革兰氏阳性病原体,通常与牛乳腺炎有关,牛乳腺炎是一种影响奶牛乳房的传染病。本研究的目的是评估甲氧西林,阿莫西林和氨苄青霉素的抗菌功效,用于检测与牛乳杆菌抗甲氧西林金黄色葡萄球菌(MRSA)菌株的抗菌功效。从方法论上讲,它是在使用板盘扩散法(Kirby-Bauer)进行抗菌活性的,并在2 µg和10 µg下使用阿莫西林和氨苄青霉素,也遵循临床和实验室标准研究所的建议。用于检测耐药性甲氧西林菌株,使用1 µg的阿沙西林,三30 µg头孢辛丁蛋白。该研究是针对正在研究的50个细菌菌株进行的,这些细菌被分离和鉴定。应用治疗表现出了非常显着的作用(p <0.05)。此外,观察到分别观察到2 µg 2 µg阿莫西林和氨苄青霉素的50%和60%的电阻。此外,分别观察到60%和68%至10μg的阿莫西林和氨苄青霉素的耐药性,表明金黄色葡萄球菌正在开发赋予抗菌耐药性的机制。为了进一步研究这一点,使用1 µg阿沙西林盘和30 µg头孢辛蛋白进行了抗菌活性,表明分离株的36%和32%分别对这些药物具有抗性。在表型上,将32%(n = 16)鉴定为金黄色葡萄球菌(MRSA),表明对所有测试的β-乳酰胺的抗性。
1 智利圣地亚哥大学医学院 ICBM 细胞和分子生物学项目,2 智利圣地亚哥德国临床实验室,智利圣地亚哥发展大学医学院德国临床实验室,3 智利圣地亚哥发展大学医学院医学科学与创新研究所 (ICIM),4 智利圣地亚哥安德烈贝罗大学生命科学学院生物信息学和综合生物学中心,5 美国马里兰州学院公园市食品药品管理局食品安全与应用营养中心,6 智利圣地亚哥安德烈贝罗大学医学院和生命科学学院生物医学科学研究所,7 生物医学研究中心' dicas y Aplicadas (CIBAP),医学院,智利圣地亚哥大学医学科学学院,智利圣地亚哥
摘要:益生菌应用领域正在迅速扩展,包括用于控制呼吸道感染的使用。然而,益生菌能够定居肺部环境并与肺病原体竞争。在这项研究中,我们旨在评估许多商业益生菌菌株对人肺上皮细胞系A549的粘附能力。此外,我们评估了益生菌的能力,以防止囊性纤维化中主要的肺部病原体之一,铜绿假单胞菌的宿主细胞粘附,并在囊肿上释放人类外周血单核细胞(PBMCS)的病原体诱导的病原体诱导的炎症反应。乳杆菌对A549细胞的粘附能力最高。与这种观察结果一致,嗜酸乳杆菌是防止与CF痰液中铜绿假单胞菌分离物的A549细胞粘附的最有效的。A549细胞,铜绿假单胞菌和嗜酸乳杆菌的三色荧光标记以及共聚焦微透镜图像分析表明,活的和紫外菌的嗜酸乳杆菌朝向铜绿假单胞菌产生了排除效应。通过CFU计数确认了此类结果。与PBMC共同培养时,活的和UV杀死的嗜酸乳杆菌都以统计学上显着的方式减少了培养上清液中IL-1β和IL-6的量。总体而言,获得的结果指向了嗜酸乳杆菌,作为对控制铜绿假单胞菌感染的潜在加速施用的进一步研究的有趣候选者。