特征冲动代表着采取行动而没有预见或考虑后果的趋势。这个特征是多方面的,可以分解为冲动性的注意力,运动和非计划子类型。当前研究的目的是调查性状冲动的亚型如何响应室内虚拟现实(VR)在行为和生理激活水平方面的不同程度的威胁。三十四名参与者被要求谈判一个虚拟环境(VE),在那里他们以虚拟“跌倒”的持续威胁在高度上行走。收集了与运动速度,相互作用频率和风险有关的行为度量。参与者还戴着卧床传感器,以收集心电图(ECG)和电肌活动(EDA)的数据。我们的结果表明,在非计划冲动性上得分很高的参与者表现出风险更高和皮肤电导水平(SCL)。具有较高运动冲动性的参与者与威胁很高时VE中的更多物体相互作用,他们还表现出矛盾的生理激活指标。注意力冲动与VE的更多跌倒有关。结果表明,性格冲动的亚型通过不同的行为模式和生理激活水平来应对威胁,从而增强了性状的多方面性质。
生物体适应突然的极端环境变化的能力产生了一些最剧烈的快速表型进化的例子。墨西哥四眼鱼(Astyanax mexicanus)在墨西哥东北部的表层水域中数量丰富,但洞穴环境的反复殖民化导致几个种群的洞穴表型独立进化。在这里,我们展示了这个物种的三个染色体规模的组装,一个表面种群和两个洞穴种群,从而首次对独立进化的洞穴种群进行全基因组比较,以评估适应洞穴环境进化的遗传基础。我们的组装代表了最高质量的序列完整性,预测的蛋白质编码和非编码基因指标远远超过了之前的资源,并且据我们所知,超过了所有长读组装的硬骨鱼类基因组,包括斑马鱼。全基因组同源比对显示洞穴形式中的基因顺序高度保守,而与其他系统发育上近或远的硬骨鱼类物种相比,染色体重排的数量更多。通过系统发育评估羊膜动物远缘分支的单个基因直系同源性,我们发现了 A. mexicanus 独有的基因直系群。与代表性表面鱼类基因组相比,我们发现了大量的结构序列多样性,这里定义为插入和删除的数量和大小以及洞穴形态之间的扩展和收缩重复。这些新的更完整的基因组资源确保了更高的性状分辨率,可用于对物种内显著性状差异进行比较、功能、发育和遗传研究。
1植物生物学和生理学系,科学系,Yaunde I大学,Yaunde P.O. 盒337,喀麦隆2植物科学系,农业学院,沃利塔·索多大学,索多P.O. Box 138,埃塞俄比亚3 UMR AGAP,CIRAD,CIRAD,F-34398法国4 AGAP Institute,Institut Agro Institute,Institut Agro,Cirrad,Cirrad,Inrae,Inrae,Inrae,Montpellier大学,F-34060,F-34060 Montpellier,France 5 Center 5 Center 5 Center D'Etudes d'Etudes r l l l l'Am pout l'Am per l'am per l'am s f l' (ceraas/isra), route de kkombole, È è s bp 3320, senegal 6 dispos and recherche et de profile, innovation et am é lioration éri é tale en ed Afrique de l'ouest (Iavao), ceras, route de Khombole, È s bp 3320, Senegal 7 Department of Agriculture, Higher Technical Teachers Training College, University of Buea,Kumba P.O. 盒子249,喀麦隆8园艺和植物科学系,吉玛大学吉玛大学农业与兽医学院,Jimma P.O. 框378,埃塞俄比亚 *通信:joel-romamaric.nguepjop@cirad.fr1植物生物学和生理学系,科学系,Yaunde I大学,Yaunde P.O.盒337,喀麦隆2植物科学系,农业学院,沃利塔·索多大学,索多P.O.Box 138,埃塞俄比亚3 UMR AGAP,CIRAD,CIRAD,F-34398法国4 AGAP Institute,Institut Agro Institute,Institut Agro,Cirrad,Cirrad,Inrae,Inrae,Inrae,Montpellier大学,F-34060,F-34060 Montpellier,France 5 Center 5 Center 5 Center D'Etudes d'Etudes r l l l l'Am pout l'Am per l'am per l'am s f l' (ceraas/isra), route de kkombole, È è s bp 3320, senegal 6 dispos and recherche et de profile, innovation et am é lioration éri é tale en ed Afrique de l'ouest (Iavao), ceras, route de Khombole, È s bp 3320, Senegal 7 Department of Agriculture, Higher Technical Teachers Training College, University of Buea,Kumba P.O. 盒子249,喀麦隆8园艺和植物科学系,吉玛大学吉玛大学农业与兽医学院,Jimma P.O. 框378,埃塞俄比亚 *通信:joel-romamaric.nguepjop@cirad.frBox 138,埃塞俄比亚3 UMR AGAP,CIRAD,CIRAD,F-34398法国4 AGAP Institute,Institut Agro Institute,Institut Agro,Cirrad,Cirrad,Inrae,Inrae,Inrae,Montpellier大学,F-34060,F-34060 Montpellier,France 5 Center 5 Center 5 Center D'Etudes d'Etudes r l l l l'Am pout l'Am per l'am per l'am s f l' (ceraas/isra), route de kkombole, È è s bp 3320, senegal 6 dispos and recherche et de profile, innovation et am é lioration éri é tale en ed Afrique de l'ouest (Iavao), ceras, route de Khombole, È s bp 3320, Senegal 7 Department of Agriculture, Higher Technical Teachers Training College, University of Buea,Kumba P.O.盒子249,喀麦隆8园艺和植物科学系,吉玛大学吉玛大学农业与兽医学院,Jimma P.O. 框378,埃塞俄比亚 *通信:joel-romamaric.nguepjop@cirad.fr盒子249,喀麦隆8园艺和植物科学系,吉玛大学吉玛大学农业与兽医学院,Jimma P.O.框378,埃塞俄比亚 *通信:joel-romamaric.nguepjop@cirad.fr
竞争利益这项研究的赞助商在指导委员会中代表,并在研究设计,研究方式和出版中发挥了作用。尽管指导委员会的所有成员都对报告的内容投入了,但资助机构并未在写作小组中代表。写作组中的所有作者都可以访问所有数据。表达的意见是调查人员的意见,不一定反映了资金机构的观点。资助者在研究设计,数据收集,分析,发布或准备手稿中没有作用。在出版时,KJM是Eli Lilly and Company的雇员。数据收集是在此工作之前发生的,数据分析和手稿准备工作独立于Eli Lilly and Company进行。其他作者声明没有利益冲突。
植物植物层由微生物群落定植,这些群落可能会影响其宿主的舒适性和生长,包括宿主对植物病原体的韧性。在塑造细菌和真菌内生菌的组合中,有多个因素,包括宿主遗传学和环境,包括宿主遗传学和环境。在这项工作中,宿主遗传学在植物 - 微生物组装组装中的作用是在感染了真菌病原体Neonectria ditissima的苹果(Malus X Forefla)树中的全同胞家族中研究的。定量性状基因座(QTL)分析表明,有多个基因座影响了单个内生类群的丰富性,而大多数QTL对内生细长的丰度具有中度到大作用(20-40%)。QTL区域在LG 1、3、4、5、10、12、13、14和15上被证明会影响多个分类单元。只有一小部分总体分类组合物的变化受宿主基因型的影响,主要成分的QTL命中显着,分别解释了细菌和真菌组成的总方差<8%和<7.4%。识别的QTL中有四个与对新生儿ditissima的耐受性相关的先前识别区域共定位。这些结果表明,构成苹果内生菌组成的遗传基础,并且可以通过育种来定制苹果中的微生物 - 宿主相关性。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于6月29日,2021年。 https://doi.org/10.1101/2021.06.28.448432 doi:biorxiv preprint
(Broccanello等人2015; Reeves等。2007)。 值得注意的是,内含子中BV_22330_orky的SNP变化(SNP183)与螺栓耐受性有关(Broccanello等人。 2015)。 有趣的是,当QB6附近的基因座被SNP183基因型取代时,观察到基因型和螺栓固定速率之间存在显着关联,这意味着QB6和SNP183之间的链接相对较近(表A1)。 SNP183处的“ T”的测序变化比“ C”更宽容(Broccanello等人。 2015)。 在本研究中,具有强螺栓耐受性的“ NK-219mm-O”表现为“ T”,而“ NK-323mm-O”具有弱螺栓耐受性的“ C.”。这种趋势与在后代线中观察到的螺栓耐受性一致。 关于基因功能,bv_22330_orky编码基质金属蛋白酶,该酶在植物生长,发育和压力反应中分泌,播放2007)。值得注意的是,内含子中BV_22330_orky的SNP变化(SNP183)与螺栓耐受性有关(Broccanello等人。2015)。有趣的是,当QB6附近的基因座被SNP183基因型取代时,观察到基因型和螺栓固定速率之间存在显着关联,这意味着QB6和SNP183之间的链接相对较近(表A1)。SNP183处的“ T”的测序变化比“ C”更宽容(Broccanello等人。2015)。在本研究中,具有强螺栓耐受性的“ NK-219mm-O”表现为“ T”,而“ NK-323mm-O”具有弱螺栓耐受性的“ C.”。这种趋势与在后代线中观察到的螺栓耐受性一致。关于基因功能,bv_22330_orky编码基质金属蛋白酶,该酶在植物生长,发育和压力反应中分泌,播放
摘要背景:使用微生物组数据与主机基因组信息结合使用的复杂性状的分析和预测是一个最引起关注的话题。但是,仍然有许多问题要回答:微生物组对复杂性状预测的有用程度如何?微波性可靠的估计值吗?可以回收宿主基因组,微生物组和现象之间的潜在生物学联系吗?方法:在这里,我们通过(i)制定一种新型的模拟策略来解决这些问题,该策略使用真实的微生物组和基因型数据作为输入,以及(ii)使用方差 - 组件方法(贝叶斯复制的核心kernel hilbert space(RKHS)和贝叶斯变量选择方法(Bayes c)(贝叶斯),以量化contiper and centery centery andy型依次的变化。提出的模拟方法可以通过保留数据的分布性能的置换程序模仿微生物组和基因型数据之间的遗传联系。结果:使用奶牛的实际基因型和瘤胃微生物群的丰度,无论某些微生物群的丰度是否受宿主的直接遗传控制,微生物组数据都可以显着提高表型预测的准确性。此改进在逻辑上取决于微生物组随着时间的推移而稳定。总体而言,尽管通常高度高度的微生物群丰度分布,但随机效应线性方法对于方差构成估计似乎是可靠的。贝叶斯C的预测性能高,但对因果效应的数量比RKHS更敏感。贝叶斯的准确性部分取决于影响表型的微生物类群的数量。结论:我们得出的结论是,可以使用方差成分估计值来表征基因组微生物组 - 链接,但我们对识别影响微生物群的病变遗传效应的可能性不太乐观,而这些宿主遗传效应影响了微生物群的丰富度,而基因组 - 微生物组 - 菌群 - 基因组 - 型号可能需要更大的样本量。复制分析的R代码位于https://github。com/migue lpere zenci so/simub iome中。
早期疫病(EB),由linariae(Neerg。)(SYN。A。tomatophila)Simmons是一种影响世界各地的西红柿(Solanum lycopersicum L.)的疾病,具有巨大的经济影响。本研究的目的是绘制与西红柿中EB耐药性相关的定量性状基因座(QTL)。F 2和F 2:3的映射种群由174条线组成,这些群体在2011年的自然条件下评估了NC 1celbr(抗性)×Fla。7775(易感性),并通过人工接种在2015年的温室中进行了自然条件评估。总共使用了375个具有特定PCR(KASP)测定法的基因分型父母和F 2种群的分析。表型数据的广泛遗传力估计为2011年和2015年的疾病评估分别为28.3%和25.3%。QTL分析显示,六个QTL与染色体2、8和11(LOD 4.0至9.1)上的EB抗性相关,解释了3.8至21.0%的表型变异。这些结果表明,NC 1celbr中EB耐药性的遗传控制是多基因的。这项研究可能有助于将EB抗性QTL和标记辅助选择(MAS)进一步绘制,以将EB耐药基因转移到精英番茄品种中,包括扩大番茄中EB耐药性的遗传多样性。
1心理学系,加利福尼亚大学,戴维斯分校,戴维斯,加利福尼亚州,美国,思维和大脑2中心,加利福尼亚大学,戴维斯大学,戴维斯大学,戴维斯,加利福尼亚州,美国,美国,精神病学和行为科学系,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,旧金山,旧金山,旧金山,加利福尼亚州,戴维斯,戴维利亚,戴维斯,加利福尼亚州,戴维利亚,加利福尼亚州,戴维利亚,戴维利亚,加利福尼亚州戴维利亚,加利福尼亚州戴维利亚, States of America, 5 Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States of America, 6 Department of Medicine, Division of HIV, Infectious Disease and Global Medicine, University of California, San Francisco, San Francisco, California, United States of America, 7 University of California Center for Climate, Health and Equity, San Francisco, San Francisco, California, United States of America, 8 Center for Climate Change Communication,乔治·梅森大学(George Mason University),美国弗吉尼亚州费尔法克斯(Fairfax)
