由库存定义(上图)。第1阶段中的所有对具有水平或垂直方向相同的基础结构。图中的颜色仅用于说明目的;对于参与者,所有形状都是黑色的。中断:在第1阶段之后,在两分钟至24小时之间的五个实验中有一个破裂。参与者在睡眠或清醒状态中度过了休息。训练阶段2:休息后,参与者接触了由不同抽象形状组成的视觉场景。新库存的创建对的一半具有水平,而另一半具有垂直的底层结构。2AFC测试试验:在第2阶段之后,参与者完成了一系列2AFC测试试验,在这些试验中,他们不得不确定训练阶段的真实对还是由形状随机组合创建的箔对,更熟悉。汇报:最后,参与者回答了有关实验的开放性问题,这些问题用于评估他们是否获得了有关形状对的存在的明确知识。
量子力学允许通过光学方法分发本质上安全的加密密钥。双场量子密钥分发是实现长距离光纤网络的最有前途的技术之一,但需要稳定双方通信信道的光长。在基于卷轴光纤的原理验证实验中,这是通过将量子通信与周期性稳定帧交错来实现的。在这种方法中,密钥流的较长占空比是以对信道长度的控制较松为代价的,并且在现实世界中使用此技术成功传输密钥仍然是一项重大挑战。利用源自频率计量的干涉测量技术,我们开发了一种同时进行密钥流和信道长度控制的解决方案,并在 206 公里现场部署的光纤上进行了演示,损耗为 65 dB。我们的技术将信道长度变化导致的量子比特误码率降低到 <1%,代表了现实世界量子通信的有效解决方案。
1 微电子与纳米电子中心(CMNE),电气与电子工程学院,南洋理工大学,50 Nanyang Ave,Singapore 639798,新加坡;chunfei001@e.ntu.edu.sg(CFS);e190013@ntu.edu.sg(LYXL);ChongWei@ntu.edu.sg(CWT);lxhu@ntu.edu.sg(LH);TanCS@ntu.edu.sg(CST)2 CNRS-NTU-THALES 研究联盟/UMI 3288,研究技术广场,50 Nanyang Ave,Border X Block,第 6 层,新加坡 637553,新加坡;jxwang@ntu.edu.sg(JW);simon.goh@ntu.edu.sg(SCKG);Philippe.Coquet@cnrs.fr(PC); ehongli@ntu.edu.sg (HL) 3 Institut d'Electronique, de Micro Electronique et de Nanotechnologie (IEMN), CNRS UMR 8520-Université de Lille, 59650 Villeneuve d'Ascq, France 4 南洋理工大学机械与航空航天工程学院, 50 Nanyang Ave, Singapore 639798,新加坡 * 通讯地址:EBKTAY@ntu.edu.sg † 两位作者对本手稿的贡献相同。
摘要在理论上对大规模电磁场和等离子体之间的能量交换负责的基本过程在理论上是充分理解的,但实际上尚未对这些理论进行测试。这些过程在所有等离子体中都是无处不在的,尤其是在行星磁圈和其他磁性环境中高和低β等离子体之间的接口。尽管这种边界遍布等离子宇宙,但尚未完全识别导致储存磁和热等离子体能量的过程,并且每个过程的相对影响的重要性尚不清楚。尽管通过在磁重新连接中转换为磁到动能来理解能量释放方面,但过渡区域中拉伸和更松弛的田间线之间的极端压力如何平衡,并通过血浆和田地的绝对对流来释放并释放。必须测试最新的理论进步和大规模不稳定性的预测。本质上,负责的过程仍然很少理解,问题尚未解决。白皮书的目的提交了ESA的2050年航行电话,以及本文的内容是突出三个出色的开放科学问题,这些问题显然是国际兴趣的:(i)当地和全球等离子体物理学的相互作用:(ii)电子磁性对转换过程中电子磁性和质子质量能量之间的分配过程中的分配量和plasma Energy之间的分配量和(III II III和(III II II)和(III II)和(III)和(iii and conteres and corte and corte and conteres and(III II)。我们对当前最新的新测量和技术进步进行了讨论,以及这些国际高优先科学目标可以大大提高的几个候选任务概况。
原子建模通常分为两种不同类型的模拟。一方面,包括Hartree -Fock和密度功能理论(DFT)方法在内的量子方法被认为是最准确的,几乎用于任何类型的化学物种[1,2]。另一方面,经典力场用于执行精度较低的大规模和长期模拟[3,4]。但是,仍然很难连接这两种方法,直到现在,人们几乎无法执行涉及数百万个原子的纳秒原子的模拟,同时保留量子方法的准确性。在这种情况下,近年来已经提出了机器学习互动电位(MLIP),并显示出实现此类模拟的巨大潜力[5-7]。目前考虑了许多方法,包括人工神经网络[8],高斯近似方法[9],线性电位[10,11],频谱邻域分析电位[12],对称梯度域机器学习[13,14]和矩张量张量的电位[15]。这些技术的成功得到了成功解决的各种材料的认可:纯属金属[16-20],有机分子[21-24],氧化物[25,26],水[27 - 31],无定形材料[32 - 37]和HYBRIDPEROVSKITES [32 - 37]和HYBRIDERIDPEROVSKITES [38]。对于所有这些技术,主要过程包括对力场使用非常通用的分析公式,然后将其进行参数化以匹配DFT计算数据库,包括总能量,力和应力张量。但是,人们承认MLIP有时会显示出对学习数据库中未包含的系统的可传递性。在最坏的情况下,MLIP SO-WELL拟合到其学习数据库中,可以在其外观察到非物理行为。为了解决此问题,主要建议是定期检查电位的准确性,因为进行了机器学习分子动力学模拟并改善MLIP“ fly the Fly” [38 - 40]。,据我们所知,这种方法的这种缺陷从未经过定量调查,而在被用户和开发人员承认的同时。
上下文:今天,由于储能设备的不断增加(移动和固定),专门用于电池的研究仍然是一个主要挑战。li-ion技术是该领域的领导者,涉及有效但有限的电极材料,导致新材料的发展。
在过去的二十年中,已经对固定在电极的氧化还原DNA层中的电子传输的机制进行了广泛的研究,但仍存在争议。在本文中,我们使用高扫描速率循环响应电电电电辅助分子动力学模拟,彻底研究了一系列短,二陈(FC)最终标记的DT寡核苷酸的电化学行为。我们证明,单链和复式的寡核苷酸的电化学响应受电极上的电子传递动力学的控制,遵守Marcus理论,但重组能量大大降低,这是由于通过DNA链的甲基附着在电极上附着在电极上的。到目前为止的未报告效果,我们归因于FC周围的水松弛,独特地塑造了FC-DNA链的电化学响应,并且对于单链和复制的DNA显然具有显着不同的作用,从而有助于E-DNA传感器的信号传导机制。
• R&D collaborations for start-ups and spin-offs • Participation to European Commission-funded projects • Knowledge Transfer Seminars • Open source software and hardware licences (as for the World Wide Web) • Training in business and entrepreneurship for CERN personnel • Dedicated funding to bridge the research/industry ga
•使用国际科学研究和专利收集的国家优先级的技术框架与研究和技术的特定领域联系起来。•与精选的国家相比,审查沙特阿拉伯的历史商业化和应用研究活动的水平,同时分析了当今沙特阿拉伯可用的能力,优势和资源。•为每个研究主题与国家优先事项保持一致的全球研发技术准备水平,以评估沙特阿拉伯未来研究的潜在商业化。•突出显示到成熟区域的差距,以基准在沙特阿拉伯目前的专利活动,以此作为国家框架优先级中每个研究主题的应用研究的商业化水平的代理。•审查每个国家优先级的研究指标,以确定具有重大影响潜力的最高潜力的研究主题。•通过利用来为每个国家优先级生产记分卡:
当前的研究检查了在MHD和多孔材料的作用下,在拉伸表面上的Williamson流体流动。此外,还检查了不同特征,例如热源,粘性耗散,焦耳加热效果和化学反应的影响。还研究了溶质分层因子和温度的影响。部分微分方程用于表示问题的管理非线性方程。应用所需的相似性转换后,这些方程将转换为非线性普通微分方程的集合。Keller Box方法用于以数值方式求解结果方程。绘制速度,温度和浓度图可以检查不同参数的影响。此外,计算本地参数并将其与早期研究的发现进行了比较。结果显示兼容性。在威廉姆森,磁性和可渗透参数升高的情况下,速度的特征表现出降低的行为。在威廉姆森,磁性,辐射,焦耳加热,热源和eckert数的影响的情况下,温度的曲线表现出越来越多的趋势,而在prandtl数字中,相反的趋势是相反的趋势,热分层参数提高。在威廉姆森,磁性,渗透率参数和相反的行为的情况下,在化学反应,溶质分层,施密特数参数的情况下,检查了浓度曲线的增强。