临床内分泌学领域以及医疗保健,正面临着新技术的变革性变化,尤其是人工智能(AI)。AI有望大大改善我们筛选,诊断,治疗,监测和教练患者的方式(1,2)。AI工具不仅会使内分泌决策的流程更快,更可靠,因此AI的使用为针对个人患者特征量身定制的个性化治疗计划开辟了道路(3,4)。AI是涵盖机器学习(ML)的计算机科学领域。ml使用旨在做出预测或分类的数学算法。这些模型通常在已知的,标记的数据集上进行训练,并迭代地增强,以获得对看不见的数据进行准确预测的能力(5)。深度学习(DL)是ML的一个子集,使用模仿人类中枢神经系统的复杂模型。dl需要使用人工神经网络(ANN)。ANN由互连层组成,这些图层通过最小化误差(6)来传递信息并优化预测。一旦受过培训,ANN可以处理庞大而复杂的数据集,以执行预测,分类,甚至更高级的应用程序等任务,例如大型语言模型(LLMS),计算机视觉和多媒体生成,从文本输入(7-9)中生成。我们预计AI会造成临床内分泌学的前所未有的破坏。尽管如此,大多数临床医生一方面缺乏对临床AI潜力的正确理解,另一方面,缺点和警告。对AI基础的平衡理解必须最大化其利益。因此,医疗保健提供者必须熟悉这项新技术,但也必须了解其局限性。表1概述了基于AI的工具与临床内分泌学中常规方法之间的差异。本文的目的是概述AI在临床内分泌学和糖尿病领域中的潜在和未来方向。
摘要尽管对行业4.0提供供应链弹性(SCR)的机会感兴趣,但对此类贡献的基本机制知之甚少。该研究开发了一个路线图,该路线图解释了供应链如何利用行业4.0 SCR功能。该研究进行了以符合条件为中心的文献综述,并确定了16个功能,该功能通过该功能4.0增强了SCR。结果表明,所确定的行业4.0 SCR功能高度相互关联,供应链成员应将其数字化策略与行业4.0提供这些功能的顺序保持一致。行业4.0对SCR的贡献首先涉及提供以数据为中心的功能,例如供应链自动化,信息和通信质量,过程监视和可见性。行业4.0进一步允许供应链合作伙伴更好地协作,以改善供应链图,复杂性管理和创新功能。通过这些功能,通过提高供应链操作的透明度,灵活性和敏捷性,行业4.0提供了更依赖但因此的弹性功能,例如供应链响应能力,自适应能力和连续性管理。路线图进一步解释了每对行业4.0 SCR功能如何相互相互作用,同时促进供应链的整体弹性。该研究讨论了可能的含义,并概述了未来研究的重要途径。
“我看到的很多是:‘我有所有这些信息。我可以获取这些信息块的摘要吗?这是传统文本分析可以做得很好的地方,就策划向大型语言模型发送的内容而言。“对于某些生成的AI方法,您给出的数据越多,这有点不当。我们发现这也可以使客户的底线受益。如果您针对要发送到大型语言模型的数据来调整它,那么它可以为您提供更好的答案,需要更少的资源,从而节省成本,从而改善业务应用程序。”
探索和发现。人类开始变得富有创造力,因此对新事物的探索产生了发明和创造性价值创造。他们还学会了创造性破坏的过程,为新事物和“创新”腾出空间,通过让生活更美好、更友好的道路前进。这个过程从未停止,因为charaiveti或通往自我实现的漫长而无尽的旅程演变为让生活更有意义的咒语的新内容。人们开始通过加速的文明进程前进。这里的自我实现这个词不是从精神角度使用的,而是指自我实现。两种力量引领创新思维,让世界成为一个更美好、更轻松、更令人满意的生活场所。但满足感仍然无法满足。第一个是永恒的渴望,即了解事物以特定方式发生的原因以及在自然界中观察到的原因。这方面最重要的例子是牛顿发现的万有引力定律、可见光原理和运动定律。第二个是通过做一些可以消除人类痛苦的事情来实现自我实现。医学界的众多发明和发现就是明证。最近的一项发明是 LED 灯泡,以最大限度地减少用电,从而减少碳排放并节省成本。
体外和体外农杆菌介导的毛状根转化 (HRT) 测定是植物生物技术和功能基因组学工具包的关键组成部分。在本报告中,使用 RUBY 报告基因优化了大豆的体外和体外 HRT。评估了不同的参数,包括农杆菌菌株、细菌细胞培养物的光密度 (OD 600 )、共培养基、大豆基因型、外植体年龄以及乙酰丁香酮的添加和浓度。总体而言,就毛状根和转化根(表达 RUBY )的诱导百分比而言,体外测定比体外测定更有效。尽管如此,体外技术被认为更快且方法更简单。在 cv 的 7 天大子叶上观察到了 RUBY 的最高转化。 Bert 用 R1000 接种 30 分钟,R1000 悬浮在 ¼ B5 培养基中,OD 为 600 (0.3),乙酰丁香酮含量为 150 µM。该测定的参数还通过两步体外毛状根转化获得了最高百分比的 RUBY。最后,使用基于机器学习的建模,进一步确定了两种测定的最佳方案。本研究建立了适用于大豆功能研究的高效可靠的毛状根转化方案。
,但我们不能忽略另一个大趋势:气候变化。越南工人越来越意识到气候变化如何影响其工作,并期望雇主采取行动,这一问题从去年的55%上升到65%。这表明对有意义的变化的需求不断增长。
Paulo是包括欧洲委员会,联合研究中心和欧洲环境局在内的几个国际机构的远见与创新的专家和顾问。此外,他在战略情报和场景计划领域与世界经济论坛合作。在过去的15年中,保罗在里斯本大学的利斯本经济与管理学院担任过各种学术职务。他一直在协调研究生计划“远见,战略和创新”,并指导执行计划,例如“场景计划和战略敏捷性”以及“期货,战略设计和创新”。自2020年以来,他一直担任ISEG MBA的执行董事。
摘要——这项工作源于对人工智能与数字技术的使用的需要,因此研究了决策中至关重要的过程,并对多个组织进行了评估。研究的过程是物品处理中的保管链。这一过程非常重要,因为它用于司法调查,以证明存在某种关系,从而可以清楚地确定犯罪现场发现的要素之间的关系。对每个相关方进行分析,了解物品的当前保管过程,以及物品从一个办公室转移到另一个办公室的情况。为了了解处理物品的保管链过程,采用了访谈工具,并与负责处理物品的人员进行更直接的接触,获取信息。总之,在完成前面的步骤后,获得了更清晰的流程图,从而确定了单一的流程流程,以及人工智能研究的一部分,提出了可以应用的建议,并针对提出的问题给出了解决方案,其中
以人工智能为中心,Amdocs 展示了与微软扩大合作的成果,两家公司于 2023 年 2 月宣布将创建一个针对 Amdocs 核心服务提供商市场的电信垂直化 CEP。简而言之,Amdocs 和微软为电信 B2C 和 B2B 用例构建了一个统一且集成的新互动平台,涵盖营销、销售、客户服务和商业等各个方面,所有这些都融合了先进的人工智能和 GenAI 功能。这将实时促进多渠道、个性化、情境感知和主动营销能力。它包括捕获和培养潜在客户、发现新的细分市场、构建和启动新客户旅程,以及创建新的捆绑包和定价促销。此外,它还提供先进的电信级商务功能,使 CSP 能够向任何类型的客户以任何规模销售任何产品。
植物转化仍然是功能基因组学和作物遗传改良最受追捧的技术,尤其是用于引入特定的新特性以及修改或重组已有特性。自 25 年前首次推出以来,转基因作物与许多其他农业技术一样,全球产量稳步增长。自首次使用农杆菌将 DNA 转移到植物细胞以来,不同的转化方法推动了分子育种方法的快速发展,将具有新特性的作物品种推向市场,而这些特性是传统育种方法难以实现或不可能实现的。如今,转化生产转基因作物是农业领域最快和最广泛采用的技术。植物基因组测序数量迅速增加,功能基因组学数据中的信息有助于了解基因功能,再加上新型基因克隆和组织培养方法,进一步加速了作物改良和特性发展。这些进步是值得欢迎的,也是使作物更能适应气候变化并确保产量以养活不断增长的人口所必需的。尽管取得了成功,但转化仍然是一个瓶颈,因为许多植物物种和作物基因型难以适应既定的组织培养和再生条件,或者转化能力较差。使用形态发生转录调控因子可以进行改进,但它们的广泛适用性仍有待检验。基因组编辑技术的进步和直接、非组织培养的转化方法为增强其他难转化作物品种的开发提供了替代方法。在这里,我们回顾了植物转化和再生的最新进展,并讨论了农业中新育种技术的机会。
