最近已经以人工突触的形式引入了基于生化信号活性的突触调节的神经形态系统,该系统是人工突触的形式,这些突触是建立组织交织的平台的模型设备。在这方面,生物杂交突触有望适应性神经元积聚。然而,这些系统从两个分子跨言中辅助,因为生物神经回路信号传递通常涉及多个神经调节剂,并且不稳定的电子接线是需要复杂的架构来接口组织的复杂体系结构。此外,尽管新颖的尖峰电路可以作为人工神经元起作用,但它们只能重新创建生物电信号通路,而电化学信号转导需要进行静脉间通信。因此,人工化学介导的突触对于执行记忆/学习计算功能至关重要。,一种电化学神经形态有机装置(eNODE)作为人工突触,在模拟两个神经递质的突触重量调节及其在突触cleft裂中的循环弹性调节及其回收机械时,它克服了电化学和读取干扰。通过将两个独立的神经递质介导的化学信号转换为PEDOT的可逆和不可逆变化:PSS电导,可以复制神经元短期和长期可塑性。通过利用PEDOT的电致色素特性:PSS,引入了一种替代的光学监测策略,该策略有望从复杂的Bio-Hybrid接口中稳定的多边形读数。平台模拟了高阶生物学过程,例如内在遗忘,记忆巩固和神经递质共同调节。这些受脑启发的功能预示着结合峰值(电神经元)和非尖峰(电化学突触)元素的组织综合神经形态系统的发展,从而设想假肢桥梁用于神经工程和再生药物。
摘要使用带有电热模型的TCAD-Santaurus工具设计和优化了基于GAN纳米线的新垂直晶体管结构。具有准1D漂移区域的研究结构适用于在高度N掺杂的硅底物上与自下而上方法合成的GAN纳米线。对电性能的研究是各种Epi结构参数的函数,包括区域长度和掺杂水平,纳米线直径以及表面状态的影响。结果表明,优化的结构具有正常的阈值模式,其阈值电压高于0.8 V,并且表现出最小化的泄漏电流,州电阻较低,并且最大化的击穿电压。据我们所知,这是对基于GAN的纳米晶体管的首次详尽研究,为科学界提供了宝贵的见解,并有助于更深入地了解GAN NANOWIRE参数对设备性能的影响。据我们所知,这是对基于GAN的纳米晶体管的首次详尽研究,为科学界提供了宝贵的见解,并有助于更深入地了解GAN NANOWIRE参数对设备性能的影响。
数据可用性声明:支持本研究结果的数据可根据合理要求从通讯作者处获取。1 H. Amano、Y. Baines、E. Beam 等人,2018 年 GaN 电力电子路线图,Journal of Physics D: Applied Physics。51,(2018)。2 K. Husna Hamza 和 D. Nirmal,GaN HEMT 宽带功率放大器综述,AEU - 国际电子和通信杂志。116,153040 (2020)。3 G. Meneghesso、M. Meneghini、I. Rossetto、D. Bisi、S. Stoffels、M. Van Hove、S. Decoutere 和 E. Zanoni,GaN 基功率 HEMT 的可靠性和寄生问题:综述,半导体科学与技术。31,(2016)。 4 JA del Alamo 和 J. Joh,GaN HEMT 可靠性,微电子可靠性。49,1200-1206 页 (2009)。5 M. Meneghini、A. Tajalli、P. Moens、A. Banerjee、E. Zanoni 和 G. Meneghesso,基于 GaN 的功率 HEMT 中的捕获现象和退化机制,半导体加工材料科学。78,118-126 页 (2018)。6 B. Kim、D. Moon、K. Joo、S. Oh、YK Lee、Y. Park、Y. Nanishi 和 E. Yoon,通过导电原子力显微镜研究 n-GaN 中的漏电流路径,应用物理快报。104,(2014)。 7 M. Knetzger、E. Meissner、J. Derluyn、M. Germain 和 J. Friedrich,《用于电力电子的碳掺杂变化与硅基氮化镓垂直击穿之间的关系》,《微电子可靠性》。66,16-21 (2016)。 8 A. Lesnik、MP Hoffmann、A. Fariza、J. Bläsing、H. Witte、P. Veit、F. Hörich、C. Berger、J. Hennig、A. Dadgar 和 A. Strittmatter,《碳掺杂氮化镓的性质,固体物理状态 (b)》。254,(2017)。 9 B. Heying、EJ Tarsa、CR Elsass、P. Fini、SP DenBaars 和 JS Speck,《位错介导的氮化镓表面形貌》,《应用物理学杂志》。 85,6470-6476 (1999)。
摘要:在这种情况下,所有电子设备都暴露于老化的机制和可变性问题,可能会影响电路的性能和稳定运行。要描述电路模拟设备的行为,需要捕获设备降解的物理模型。通常基于封闭形式数学表达式的紧凑模型通常用于电路分析,但是,这种模型通常不是很准确。在这项工作中,我们使用物理可靠性模型,并将其应用于伪CMOS逻辑逆变器电路的老化模拟。采用的模型可通过我们的可靠性模拟器构成获得,并经过校准,以评估偏置温度不稳定性(BTI)降解现象对逆变器电路的性能由商业SIC Power MOSFET制成的性能。使用香料模拟,我们提取逆变器电路的传播延迟时间,并考虑到在DC和AC工作条件下的压力时间的晶体管阈值电压漂移。为了达到评估的最高准确性,我们还考虑在AC信号的低偏置阶段回收设备的恢复,这在现有方法中通常被忽略。基于传播延迟时间分布,在本工作中也讨论了合适的物理缺陷模型精确分析电路操作的重要性。
完整作者列表: Nasiruddin, Md;东北大学,化学 Waizumi, Hiroki;东北大学,化学系 Takaoka, Tsuyoshi;东北大学,先进材料多学科研究中心 Wang, Zhipeng;东北大学,化学 Sainoo, Yasuyuki;东北大学 - Katahira 校区,先进材料多学科研究中心 Mamun, Muhammad Shamim Al;库尔纳大学,化学 Ando, Atsushi;国家先进工业科学技术研究所,纳米电子研究所 FUKUYAMA, MAO;东北大学,先进材料多学科研究中心;Hibara, Akihide;东北大学,先进材料多学科研究中心 Komeda, Tadahiro;东北大学,先进材料多学科研究中心
生物药物免疫疗法的出现彻底改变了癌症和自身免疫性疾病的治疗。然而,在某些患者中,抗药抗体 (ADA) 的产生会阻碍药物的疗效。ADA 的浓度通常在 1-10 pm 范围内;因此它们的免疫检测具有挑战性。针对用于治疗类风湿性关节炎和其他自身免疫性疾病的药物英夫利昔单抗 (IFX) 的 ADA 是焦点。报道了一种双极电解质门控晶体管 (EGT) 免疫传感器,该传感器基于还原氧化石墨烯 (rGO) 通道和与栅极结合的 IFX 作为特定探针。rGO-EGT 易于制造并具有低电压操作(≤ 0.3 V)、15 分钟内稳健的响应和超高灵敏度(检测限为 10 am)。提出了基于 I 型广义极值分布的整个 rGO-EGT 传递曲线的多参数分析。结果表明,即使在其拮抗剂肿瘤坏死因子 α (TNF- 𝜶 ,IFX 的天然循环靶点) 同时存在的情况下,也可以选择性地量化 ADA。
Mbaye Dieng,Mohamed Bensifia,JérômeBorme,Ileana Florea,Catarina Abreu等。CVD石墨烯的湿化学非共价官能化:分子掺杂及其对电解质配备石墨烯现场效果晶体管晶体管的影响。物理化学杂志C,2022,126(9),pp.4522-4533。10.1021/acs.jpcc.1c10737。hal-03871463
“刚刚接受的”手稿已被同行评审并接受出版。它们是在技术编辑之前在线发布的,格式化以进行出版和作者证明。美国化学学会提供了“刚刚接受的”,作为研究界的服务,以加快接受后的科学材料的传播。“刚刚接受的”手稿以PDF格式完整出现,并带有HTML摘要。“刚刚接受的”手稿已被完全审查,但不应被视为官方版本的记录。它们是由数字对象标识符(DOI®)提及的。“刚接受”是提供给作者的可选服务。因此,“刚刚接受的”网站可能不包含所有将在期刊上发表的文章。在用技术编辑和格式化手稿后,它将从“刚刚接受的”网站中删除,并作为ASAP文章出版。请注意,技术编辑可能会对可能影响内容的手稿文本和/或图形进行较小的更改,以及适用于期刊有关的所有法律免责声明和道德准则。acs不能对使用这些“仅接受”手稿中包含的信息产生的错误或后果负责。
本文介绍了K-均无监督的机器学习算法的新应用,以在电子设备的重合离子辐照实验中识别噪声中的单个事件瞬态(SET)事件的问题。我们通过分析MOSFET晶体管的几种重型离子照射产生的集合事件的实验数据集来探索K-均值算法的性能。分别使用隔离森林和随机森林算法研究了所选特征(平均偏差,偏度和峰度)的数据异常和有效性。结果表明,K均值算法具有很高的能力,可以使用前四个统计矩作为特征从噪声中识别事件,从而允许将这种方法用于现场事件检测和诊断,而无需以前的算法训练或实验数据的预先分析。
