单胺氧化酶 A ( MAOA ) EcoRV 多态性 (rs1137070) 是 MAOA 基因内独特的同义突变 (c.1409 T > C),在 Maoa 基因表达和功能中起着至关重要的作用。本研究旨在探索小鼠 Maoa rs1137070 基因型与 MAOA 基因表达差异之间的关系。携带 rs1137070 CC 基因型的小鼠的 Maoa 表达水平明显较低,与 T 携带者相比的优势比为 2.44。此外,MAOA 的野生型 TT 基因型显示 mRNA 表达升高和半衰期更长。我们还深入研究了基因型之间的显著表达和结构差异。此外,很明显,Maoa 内不同的天冬氨酸同义密码子会影响 MAOA 表达和酶活性,突出了 rs1137070 与 MAOA 之间的关联。为了证实这些发现,双荧光素酶报告基因检测证实了 GAC 比 GAT 结合更有效。相反,同义突变改变了个体小鼠的 Maoa 基因表达。RNA 下拉检测表明,这种改变可能会影响与 RNA 结合蛋白的相互作用。总之,我们的结果表明,同义突变确实可以调节基因表达的下调,从而导致 MAOA 功能发生变化,并可能与神经系统相关疾病有关。
简介。非常早产(VPT)出生是儿童发育和父母福祉的主要风险状况,这主要是由于新生儿重症监护病房(NICU)住院期间多种压力来源(例如,分离和疼痛暴露)。早期视频反馈(VF)干预措施被证明有效地促进了投票婴儿的发展和父母的福祉。脑电图(EEG)Hyperscanning允许在婴儿与父母之间的实时相互作用期间评估大脑对脑之间的共同调节,并承诺强调早期VF干预措施的互动效益背后的机制。目标。比较了完美的(FT)二元组和与母亲相互作用的VPT婴儿之间的大脑到脑共同调节的索引。研究早期放病后VF干预对VPT二元组的大脑到脑共同调节指数的影响。
磷营养很长时间以来一直在影响植物的花卉转变,但潜在的机械主义尚不清楚。拟南芥磷酸转运蛋白磷酸盐1(PHO1)在从根到芽的磷酸转移中起关键作用,但是它是否以及如何调节花卉转变是未知的。在这里,我们表明PHO1的敲除突变延迟在长期和短期条件下开花。Pho1突变体的晚开花可以通过玫瑰花结或射击顶点的Pi补充来部分挽救。嫁接测定法表明,PHO1突变体的晚开花是磷酸盐从根到芽的磷酸易位受损的结果。SPX1和SPX2的基因敲除突变,这是两个磷酸盐饥饿反应的两个负调节剂,部分挽救了PHO1突变体的晚期流动。pho1在开花时间调节中对Pho2(Pho2的负调节剂)表示同义。损失PHO1会抑制某些花卉激活剂的表达,包括编码佛罗里语的FT,并在芽中诱导某些花卉阻遏物的表达。遗传分析表明,至少对于PHO1突变体的晚开花,至少部分缩进的茉莉酸信号传导。此外,我们发现pho1的水稻pho1; 2,Pho1的同源物在花卉过渡中起着类似的作用。这些结果表明PHO1整合了磷营养和开花时间,并且可以用作调节植物中磷营养介导的开花时间的潜在目标。
Discovery of potent SARS-CoV-2 nsp3 macrodomain inhibitors uncovers lack of translation to cellular antiviral response Alpha A. Lee 1,2* , Isabelle Amick 1,2 , Jasmin C. Aschenbrenner 1,3,8 , Haim M. Barr 1,4 , Jared Benjamin 1,5 , Alexander Brandis 1,9 , Galit Cohen 4 , Randy Diaz-Tapia 1,5 , Shirly Duberstein 1.4 , Jessica Dixon 1,7 , David Cousins 1,6 , Michael Fairhead 1,7 , Daren Fearon 1,3,8 , James Frick 1,2 , James Gayvert 1,2 , Andre S. Godoy 1,10 , Ed J. Griffin 1,6 , Kilian Huber 1,7 , Lizbé Koekemoer 1,7 , Noa Lahav 1,4 , Peter G. Marples 1,3,8,Briana L. McGovern 1,5,Tevie Mehlman 1,9,Matthew C. Robinson 1,2,Usha Singh 1,7,Tamas Szommer 1,7,Charles W.E.Tomlinson 1,3,8,Thomas Vargo 1,2,Frank Von Delft 1,3,7,8,Siyi Wang 1.7,Kris White 1,5,Eleanor Williams 1,7,Max Winokan 1,3,8
复杂的三维体外器官模型或器官提供了一种独特的生物学工具,其优势比二维细胞培养系统具有明显的优势,这可能过于简单,动物模型可能太复杂,可能无法概括人类的生理学和病理学。在驱动干细胞分化为不同的器官类型方面取得了重大进展,尽管仍然存在一些挑战。例如,许多类器官模型都具有高的异质性,并且很难完全融合体内组织和器官发育的复杂性,以忠实地再现人类生物学。成功解决此类局限性将增加器官的生存力作为药物开发和临床前测试的模型。在2022年4月3日至6日,在Keystone研讨会上召集了“器官开发和生物学专家”,“器官作为基本发现和翻译的工具”,讨论了这种相对较新的模型系统对人类发展和疾病的最新进步和见解。
摘要 本研究考察了一家成熟企业的商业模式创新。我们调查了一家瑞典公用事业公司的案例,该公司采用并实施了源自公司外部的商业模式模式。我们借鉴斯堪的纳维亚翻译理论来了解商业模式创新如何展开的微观动态。我们的研究结果表明,商业模式模式被分解成其组成部分,这些组成部分被单独翻译,然后一点一点地(重新)组装成一个整体,形成一个新的商业模式。这个过程涉及由五种实践相互作用激活的几个翻译循环:制定、参与、抵制、锚定和激励。根据我们的研究结果,我们开发了一个商业模式翻译框架。从而有助于更好地理解由采用商业模式模式引发的商业模式创新的微观视角。我们还发现,由外部商业模式模式触发的商业模式创新过程与完全在公司内部开发新商业模式时发生的过程不同。
委员会最近重申了生物技术对欧盟的竞争力和战略自主权的重要性,并提出了一系列有针对性的行动来促进欧盟的生物技术和生物制造。欧盟中的沟通与自然界建立未来:促进生物技术和生物制造业确定了该行业面临的挑战和障碍:转移到市场的研究和技术转移,监管复杂性,资金,技能,价值链价值链,价值链障碍,知识障碍,知识分子,知识产权,公众接纳和经济安全。
翻译生物科学计划中的所有博士学位研究生将完成总计72个学时,包括正式的课程和研究学分。需要在8000或9000级的正式课程中至少进行15个学分。研究生必须在正式课程中保持3.0的GPA。研究学时将以S/U为基础。