B细胞淋巴瘤2(BCL-2)蛋白家族的成员在控制线粒体膜的膜性和调节细胞凋亡方面起着至关重要的作用。 This family is divided into pro-apoptotic proteins that permeabilize the mitochondrial outer membrane, anti-apoptotic members that inhibit this process, and a BCL-2 containing only the BCL-2-Homology-3 (BH3) domain (BH3-only) subset of proteins that directly or indirectly activate the pro-apoptotic proteins. 所有Bcl-2 pro蛋白共享一个至四个BH保守的域,BH3域对于Bcl-2家族蛋白之间的同型和杂种至关重要,并且对凋亡活性的调节至关重要。 肿瘤类型,包括血液恶性肿瘤,乳房,中枢神经系统,结肠,肺,卵巢,前列腺和肾脏癌,以及黑色素瘤1过表达MCL1,这是Bcl-2蛋白家族的抗凋亡/促凋亡/亲苏化构件。 2B细胞淋巴瘤2(BCL-2)蛋白家族的成员在控制线粒体膜的膜性和调节细胞凋亡方面起着至关重要的作用。This family is divided into pro-apoptotic proteins that permeabilize the mitochondrial outer membrane, anti-apoptotic members that inhibit this process, and a BCL-2 containing only the BCL-2-Homology-3 (BH3) domain (BH3-only) subset of proteins that directly or indirectly activate the pro-apoptotic proteins.所有Bcl-2 pro蛋白共享一个至四个BH保守的域,BH3域对于Bcl-2家族蛋白之间的同型和杂种至关重要,并且对凋亡活性的调节至关重要。肿瘤类型,包括血液恶性肿瘤,乳房,中枢神经系统,结肠,肺,卵巢,前列腺和肾脏癌,以及黑色素瘤1过表达MCL1,这是Bcl-2蛋白家族的抗凋亡/促凋亡/亲苏化构件。2
摘要:多发性骨髓瘤 (MM) 已成为下一个最有可能接受细胞免疫治疗的肿瘤或血液病。大部分注意力都集中在 B 细胞成熟抗原 (BCMA) 上,它是骨髓瘤细胞上独特的细胞表面蛋白,可用于单克隆抗体、抗体药物偶联物 (ADC)、T 细胞重定向双特异性分子和嵌合抗原受体 (CAR) T 细胞靶向。BCMA 是肿瘤坏死因子受体 (TNFR) 超家族的成员,可结合两种配体 B 细胞活化因子 (BAFF) 和增殖诱导配体 (APRIL),并介导血浆和 MM 细胞的生长和存活。有趣的是,另一个 TNFR 超家族成员跨膜激活剂和 CAML 相互作用蛋白 (TACI) 也结合相同的配体,并在正常血浆和恶性 MM 细胞中发挥与 BCMA 大致重叠的作用。在本文中,我们回顾了 TACI 的生物学,重点介绍其在正常 B 细胞和浆细胞以及恶性 MM 细胞中的作用,并讨论了将 TACI 作为 MM 免疫疗法潜在靶点的各种方法。
Tyrobp TMD在膜上旋转蓝色。从T18和T25控制质粒获得的颜色背景来自偶然的细胞质结合。b)与空质粒相比,相对强度的中值,四分位数和范围值。在不同配置下对X-GAL滴的半定量分析(T18/T25 N = 99; ZIP :: T18/ZIP :: T25 N = 81; TREM2TMD :: T18/Tyrobp TMD :: T25 :: T25 N = 57)。25
6 意大利国家研究委员会生物化学和细胞生物学研究所,意大利罗马,7 明斯特大学医院妇产科,德国明斯特,8 布雷西亚大学分子与转化医学系,意大利布雷西亚,9 意大利米兰神经科学研究所,10 米兰大学健康生物医学科学系,意大利米兰,11 美国马里兰州贝塞斯达国立卫生研究院 NIDDK 细胞与分子生物学实验室,12 德国明斯特大学医院放射治疗和放射肿瘤学系,13 美国新墨西哥州阿尔伯克基洛夫莱斯生物医学研究所,14 意大利奥尔巴萨诺都灵大学肿瘤学系,15 意大利坎迪奥洛坎迪奥洛癌症研究所 - IRCCS 血管肿瘤实验室,
摘要:跨膜蛋白(TMP)是一类用于生物学和特性目的的必需蛋白质。尽管结构数量越来越多,但可用序列数量的差距仍然令人印象深刻。选择专用函数以在数百个中选择最可能/相关模型是TMP的特定问题。的确,大多数方法主要集中在球形蛋白上。我们开发了一种评估TMP结构模型质量的替代方法。hpmscore使用无监督的学习方法考虑了序列和局部结构信息,称为混合蛋白模型。该方法在非常不同的TMP all-α蛋白上进行了广泛的评估。产生了不同质量的结构模型,从好质量到不良质量。hpmscore在识别更多退化模型的良好比较模型方面的表现要好,而浓度为46.9%的良好比较模型对40.1%,两者都占13.0%的结果。当所使用的比对高于35%时,HPM是最好的52%,而36%的涂料(两者均为12%)。这些令人鼓舞的结果需要进一步改进,尤其是当序列身份低于35%以下时。增强区域将是进行更大的训练集进行培训。已经实施了专用的Web服务器并提供给科学社区。可以与从比较建模到深度学习方法产生的结构模型一起使用。
大数据集为典范以前研究的主题提供了新的见解。我们使用共同进化数据创建了跨膜β桶(TMBB)的大型高质量数据库。通过在生成的进化接触图上应用简单的特征检测,我们的方法(Isitabarrel)在区分蛋白质类别时可以达到95.88%的平衡精度。此外,与Isitabarrel的比较表明,在先前的TMBB算法中,假阳性率很高。除了比以前的数据集更准确之外,我们的数据库(在线可用)还包含来自38个门的1,938,936个细菌TMBB蛋白,比以前的Sets TMBB-DB和OMPDB大17和2.2倍。我们预计,由于其质量和大小,该数据库将作为需要高质量TMBB序列数据的有用资源。我们发现TMBB可以分为11种类型,其中三种尚未报告。我们发现,含TMBB的生物的蛋白质组百分比的巨大差异,其中一些使用其蛋白质组的6.79%用于TMBB,而另一些则使用其蛋白质组的0.27%。TMBBS长度的分布暗示了先前假设的重复事件。此外,我们发现C末端β-信号在不同类别的细菌之间会有所不同,尽管最常见的是LGLGYRF。但是,该β-信号仅是原型TMBB的特征。九种非原型枪管类型具有其他C末端基序,并且这些替代基序是否有助于TMBB插入或执行任何其他信号传导函数,尚待确定。
。CC-BY 4.0 国际许可,根据未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2023 年 5 月 8 日发布。;https://doi.org/10.1101/2022.10.31.514582 doi:bioRxiv 预印本
神经营养受体参与了脑发育和神经塑性的调节,因此可以作为抗癌和中风恢复药物,抗抑郁药等的靶标。需要阐明各种状态下TRK蛋白结构域在各种状态下的结构,以允许合理的药物设计。然而,关于trk受体的跨膜和叶膜结构域的构象知之甚少。在本研究中,我们采用NMR光谱来解决脂质环境中TRKB二聚体跨膜结构域的结构。我们使用诱变并确认该结构对应于受体的活性状态。随后研究TRKB与抗抑郁药氟西汀的相互作用和抗精神病药物氯丙嗪提供了一种明确的自谐模型,描述了氟西汀通过与其跨膜结构结合而激活受体的机制。
(ELEXACAFTOR/TEZACAFTOR/IVACAFTOR和IVACAFTOR)粗体突变被批准有效12/21/2020表1:响应Trikafta 3141del9 E822K G1069R L967S R967S R117L L967S R117L S912L S912L 546INSCA的CFTR基因突变列表R117P S945L A46D F311DEL G1249R L1077P R170H S977F A120T F311L F311L G1349D L1324P R258G S1159F S1159F A234D A234D F508C H139R L1335P L1335P R334L S1159P; H199Y L1480P R334Q S1251N A455E F508DEL* H939R M152V R347H S1255P A554E F575Y H1054D H1054D A1067T F1052V H1085R M952T R352Q T1053I D110E F1074L H1375P M1101K R352W V201M D110H F1099L F1099L I148T I148T P553Q V232D D192G D192G G27R I117R I117R I117R I117R I117R I117R I117R RAR D443Y G85E I336K P205S R751L V456F D443Y; G576A; R668C; R668C†G126D I502T P574H R792G V562I V562I D579G D579G G178E D578E I601F i601f i601f i601f Q98R R933G V733G V733G V733G V754M D614M D614M D614MD614MD614MD614MD614MD614MD614MD614MD614MD614MD614MD614 d614 d614m d614m d614 d614 d614 Q237E R1066H V1153E D836Y G194R I807M Q237H R1070Q V1240G D924N G194V I980K Q359R R1070W V1293G D979V G314E I1027T Q1291R R1162L W361R D1152H G463V I1139V R31L R1283M W1098C D1270N G480C I1269N R74Q R1283S W1282R
蛋白酶参与几乎所有的生物过程,这意味着它们对健康和病理状况都很重要。蛋白酶失调是癌症的一个关键事件。最初,研究确定了它们在侵袭和转移中的作用,但最近的研究表明,蛋白酶参与癌症发展和进展的所有阶段,既直接通过蛋白水解活性,也间接通过调节细胞信号传导和功能。在过去的二十年里,一种新的丝氨酸蛋白酶亚家族,称为 II 型跨膜丝氨酸蛋白酶 (TTSP) 已被鉴定。许多 TTSP 在多种肿瘤中过度表达,是肿瘤发展和进展的潜在新标志物;这些 TTSP 是抗癌治疗的可能分子靶点。跨膜蛋白酶丝氨酸 4 (TMPRSS4) 是 TTSP 家族的一员,在胰腺癌、结直肠癌、胃癌、肺癌、甲状腺癌、前列腺癌和其他几种癌症中上调;事实上,TMPRSS4 表达升高通常与预后不良有关。由于其在癌症中的广泛表达,TMPRSS4 已成为抗癌研究的关注焦点。本综述总结了有关 TMPRSS4 的表达、调控和临床相关性的最新信息,以及其在病理环境中的作用,特别是在癌症中。它还概述了上皮-间质转化和 TTSP。