(在非进攻顺序中)和(u J)的正征值的顺序是特征向量的相应正交系统,该问题的解决方案由光谱投影仪P J = J =J∈Ju J j u j u j和Index Set j给出。在统计应用中,X的分布及其协方差结构尚不清楚。相反,人们经常观察样本x 1,。。。,x的n独立副本的x n,现在的问题是要找到p j的估计器。PCA的想法是通过第一次通过经验协方差操作员估算的问题来解决这个问题2.2.1,用于精确定义)。因此,一个关键问题是控制和量化P J和P J之间的距离。在过去的几十年中,围绕这个问题的大量文献已经发展,例如Fan等。 [13],Johnstoneand Paul [24],Horváth和Kokoszka [18],Scholkopf和Smola [45],Jolliffe [23] [23]进行一些概述。 一种研究ˆ P J和P J之间距离的传统方法是控制一项规范,以测量经验协方差算子和人口协方差操作员之间的距离。 一旦建立了这种情况,就可以通过诸如戴维斯 - 卡汉(Davis -Kahan)不平等之类的不平等现象来推导ˆ p j -p j的界限,例如,请参见hsing and eubank [16],Yu等。 [52],以及Cai和Zhang [9],Jirak和Wahl [25],以获取一些最新结果和扩展。 [30]。 但是,如Naumov等人所述。Fan等。[13],Johnstoneand Paul [24],Horváth和Kokoszka [18],Scholkopf和Smola [45],Jolliffe [23] [23]进行一些概述。一种研究ˆ P J和P J之间距离的传统方法是控制一项规范,以测量经验协方差算子和人口协方差操作员之间的距离。一旦建立了这种情况,就可以通过诸如戴维斯 - 卡汉(Davis -Kahan)不平等之类的不平等现象来推导ˆ p j -p j的界限,例如,请参见hsing and eubank [16],Yu等。[52],以及Cai和Zhang [9],Jirak和Wahl [25],以获取一些最新结果和扩展。[30]。但是,如Naumov等人所述。但是,如Naumov等人所述。然而,对于更精确的统计分析,诸如限制定理或引导程序近似之类的爆发结果更为可取。Koltchinskii和Lounici [27],Koltchinskii和Lounici [28,29](及相关)的最新作品在这里特别感兴趣。除其他外,它们提供了预期的平方hilbert – schmidt距离e∥ˆ p j-p j-p j∥22和berry – esseen类型界限的分布分布近似值的精确的,非反对分析的分布分析。在Löfliper[32],Koltchinskii [31],Koltchinskii等人中讨论了一些扩展问题和相关问题。[39],这些结果有一些局限性,并且自举近似可能更可取和灵活。再次,在纯粹的高斯设置中,Naumov等人。[39]成功地展示了一个自举程序,并带有伴随的界限,以减轻某些问题以限制出于推论目的而限制分布。让我们指出,从数学角度来看,Koltchinskii和Lounici [29]和Naumov等人的结果。[39]有些互补。更确切地说,在Naumov等人中,定理2.1的引导程序近似的结合。[39]失败(意味着它仅产生琐碎的性),而Koltchinskii和lounici的定理6中的绑定[29]却没有,反之亦然,请参见Sect。5进行一些示例和进一步的讨论。[7],Yao和Lopes [51],Lopes等。[33],江和拜[20],刘等。[34]。也广泛研究了特征值和相关数量的极限定理和引导近似值的主题,例如,请参见Cai等人。这项工作的目的是为两个分布提供定量界限(例如clts)和bootstrap近似,在矩和光谱衰减方面,情况相对温和。关于后者,我们的结果表现出一种不变性,在很大程度上不受多项式,指数(甚至更快)衰减的影响。
1加利福尼亚理工学院的生物学与生物工程;美国加利福尼亚州91125,帕萨迪纳。2医学物理学巴黎,Inserm,CNRS,ESPCI巴黎,PSL研究大学; 75012巴黎,法国。3法国巴黎生物医学超声的INSERM技术研究加速器4 USC凯克医学院神经外科系;美国加利福尼亚州洛杉矶90033,美国。5 USC神经园林中心,USC凯克医学院;美国加利福尼亚州洛杉矶90033,美国。6兰乔·洛斯·阿米戈斯国家康复中心;美国加利福尼亚州90242,美国。7 T&C Chen Brain-i界接口中心,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。 8南加州大学生物医学工程;美国加利福尼亚州洛杉矶。 9化学与化学工程,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。 10 Andrew和Peggy Cherng医学工程系,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。 11霍华德·休斯医学院;美国加利福尼亚州91125,帕萨迪纳。 a a型侧面侧面皮层(LIP)位于后顶叶皮层(PPC)内是将空间信息转化为准确的Saccadic眼球运动的重要区域。 尽管进行了广泛的研究,但我们并不完全了解唇内预期运动方向的功能解剖结构。 这部分是由于技术挑战所致。 电生理记录只能记录来自PPC的小区域,而fMRI和其他全脑技术缺乏足够的时空分辨率。7 T&C Chen Brain-i界接口中心,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。8南加州大学生物医学工程;美国加利福尼亚州洛杉矶。 9化学与化学工程,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。 10 Andrew和Peggy Cherng医学工程系,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。 11霍华德·休斯医学院;美国加利福尼亚州91125,帕萨迪纳。 a a型侧面侧面皮层(LIP)位于后顶叶皮层(PPC)内是将空间信息转化为准确的Saccadic眼球运动的重要区域。 尽管进行了广泛的研究,但我们并不完全了解唇内预期运动方向的功能解剖结构。 这部分是由于技术挑战所致。 电生理记录只能记录来自PPC的小区域,而fMRI和其他全脑技术缺乏足够的时空分辨率。8南加州大学生物医学工程;美国加利福尼亚州洛杉矶。9化学与化学工程,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。10 Andrew和Peggy Cherng医学工程系,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。 11霍华德·休斯医学院;美国加利福尼亚州91125,帕萨迪纳。 a a型侧面侧面皮层(LIP)位于后顶叶皮层(PPC)内是将空间信息转化为准确的Saccadic眼球运动的重要区域。 尽管进行了广泛的研究,但我们并不完全了解唇内预期运动方向的功能解剖结构。 这部分是由于技术挑战所致。 电生理记录只能记录来自PPC的小区域,而fMRI和其他全脑技术缺乏足够的时空分辨率。10 Andrew和Peggy Cherng医学工程系,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。11霍华德·休斯医学院;美国加利福尼亚州91125,帕萨迪纳。a a型侧面侧面皮层(LIP)位于后顶叶皮层(PPC)内是将空间信息转化为准确的Saccadic眼球运动的重要区域。尽管进行了广泛的研究,但我们并不完全了解唇内预期运动方向的功能解剖结构。这部分是由于技术挑战所致。电生理记录只能记录来自PPC的小区域,而fMRI和其他全脑技术缺乏足够的时空分辨率。在这里,我们使用功能性超声成像(FUSI),这是一种具有高灵敏度,大空间覆盖范围和良好空间分辨率的新兴技术,以确定如何在PPC跨PPC编码运动方向。我们使用FUSI记录了PPC中脑血容量的局部变化,因为两只猴子在整个视野中对目标进行了记忆引导的扫视。然后,我们分析了PPC每个冠状平面内首选方向反应场的分布。嘴唇中的许多子区域表现出强烈的定向调整,在几个月到几年之间是一致的。这些介质图在嘴唇中揭示了一个高度异质的组织,其中许多相邻的皮层编码不同的方向。唇部有一个粗糙的地形,前唇代表更对侧的向上运动,而后唇则代表了更对侧的向下运动。这些结果解决了我们对Lip功能组织的理解:贴片的邻里组织和整个LIP的更广泛的组织。这些发现是通过在数月到几年中跟踪相同的唇部种群的方法来实现的,并在以前使用fMRI或电生理学方法无法实现的方向特异性的介观图。c ommon缩写使用CBV:脑血体积FUSI:功能性超声成像GLM:通用线性型号IPS:内部内沟LDA LDA:线性判别分析LFP:局部田间电势LIP:侧向内部室内区域
中国樱桃(Prunus pseudocerasus)是中国主要的核果作物之一,具有十分重要的意义。然而,由于缺乏高质量的基因组资源,人工改良其性状和遗传分析具有挑战性,这主要归因于难以解析其四倍体和高度杂合的基因组。在此,我们使用 PacBio HiFi、Oxford Nanopore 和 Hi-C 组装了品种‘诸暨短柄饼’的染色体水平、单倍型解析基因组,包含 993.69 Mb,组装成 32 条假染色体。单倍型内比较分析揭示了广泛的基因组内序列和表达一致性。系统发育和比较基因组分析表明,P. pseudocerasus 是一个稳定的同源四倍体物种,与野生的 P. pusilliflora 密切相关,两者大约在 1834 万年前分化。与其他李属植物类似,樱桃也经历了一次常见的全基因组复制事件,该事件发生在大约 1.3996 亿年前。由于果实硬度低,樱桃不适合长距离运输,从而限制了其在中国的快速发展。在成熟果实阶段,樱桃品种‘诸暨短柄梨’的硬度明显低于樱桃品种‘黑珍珠’。硬度的差异归因于果胶、纤维素和半纤维素含量变化的程度。此外,比较转录组分析发现了两个参与果胶生物合成的基因 GalAK-like 和 Stv1,这可能是造成‘诸暨短柄梨’和‘黑珍珠’果实硬度差异的原因。PpsGalAK-like 和 PpsStv1 的瞬时转化会增加原果胶含量,从而提高果实硬度。我们的研究为中国樱桃功能基因组学研究和重要园艺性状的提升奠定了坚实的基础。
量子体积是近期量子计算机的全栈基准。它量化了在目标设备上可以以合理的保真度执行的方形电路的最大尺寸。误差缓解是一组技术,旨在消除噪声量子计算机在计算感兴趣的期望值时计算中存在的噪声影响。有效量子体积是一种拟议的度量标准,它将误差缓解应用于量子体积协议,以评估目标设备和误差缓解算法的有效性。数字零噪声外推 (ZNE) 是一种误差缓解技术,它使用电路折叠将误差放大已知比例因子,然后将计算出的期望值外推到零噪声极限,从而估计无噪声期望值。在这里,我们证明 ZNE 与具有分数比例因子的全局和局部单元折叠以及动态解耦相结合,可以将有效量子体积增加到供应商测量的量子体积以上。具体来说,我们测量了四个 IBM Quantum 超导处理器单元的有效量子体积,得到的值大于供应商在每个设备上测量的量子体积。这是首次报告出现这样的增长。
在预防动脉粥样硬化心血管疾病(ASCVD)中,血液低密度脂蛋白胆固醇(LDL-C)水平越高,越好,越越好。换句话说,LDL-C水平是因果标记。另一方面,低血液高密度脂蛋白胆固醇(HDL-C)的水平通常很差,但过高的水平不一定很好。此外,在接受LDL-C降低疗法的患者中增加HDL-C水平的治疗并不一定会减少ASCVD。因此,HDL-C已从其荣誉位置被删除为“良好的胆固醇”,而HDL-C水平现在被认为仅仅是标记1)。胆汁固醇酯转移蛋白(CETP)抑制剂似乎通过增加HDL而失去了“ ASCVD预防剂”的形象。但是,他们里面仍然有生命!临床试验和孟德尔随机分析的结果将注意力集中在CETP抑制剂的策略上,不仅可以增加HDL,还要减少载脂蛋白B(APOB)含有含脂蛋白,这导致了它们作为LDL降低剂的发育。由于CETP将HDL颗粒中的胆固醇酯转移到非常低密度脂蛋白(VLDL)中的含APOB的脂蛋白和甘油三酸酯中,因此其抑制作用减少了含有蛋白蛋白的胆固醇的含量。在本期刊中,Harada-Shiba等人。研究了102名日本受试者在双盲,随机,受控的II期试验中,在102名日本受试者中,CETP抑制剂的功效,安全性和耐受性。与安慰剂组相比,持续时间为8周,肥胖剂量为2.5、5和10 mg/天。药代动力学。所有患者已经接受了他汀类药物治疗(Atorvastatin 10或20 mg/天或rosuvastatin 5或10 mg/天),使研究设计
Thermo Scientific™TMTPRO试剂使研究人员能够在单个LC-MS/MS实验中同时识别和量化许多样品中的蛋白质和肽。当前的TMTPRO同质质量标签结合了13 C&15 N稳定的同位素,以通过高分辨率MS/MS分析并行对多达18个样品进行定量分析。为了进一步提高多路复用能力,我们开发了17种同位素的同型同位同位素集,该集合在记者组上包含一个2 h同位素,以产生不同的记者离子质量,与3 MDA的现有集合不同。与传统的试剂集合结合使用,氘化试剂可以对Thermo Scientific™Orbitrap平台上多达35个样品进行多重定量分析。在这里,我们表征了新型的TMTPRO变体,并评估了它们的32个PLEX定量的性能。
©2024作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
1乔治·S·S·乔治·S·怀斯·怀斯(George S. 6997801,以色列4雷蒙德和贝弗利·萨克勒精确科学学院,特拉维夫大学,特拉维夫6997801,以色列5植物科学与食品安全学院,乔治·S·S·S·S·S·S·乔治·S·乔治·S。乔治·S。电子邮件:talp@tauex.tau.ac.il电子邮件:talp@tauex.tau.ac.il
大多数当代死亡率模型都依赖于推断趋势或过去的事件。但是,气候变化将受到人口动态的影响,尤其是温度对死亡率的影响。 在本文中,我们引入了一种新型方法,以使用多人口死亡率模型对预计死亡率进行影响。 这种方法将随机死亡率模型与气候流行病学模型结合在一起,预测由于每日温度波动而导致的死亡率变化,无论是过度还是不足。 这种方法的重要性在于它通过利用气候模型的温度预测来破坏死亡率预测的能力,并评估这种未指定的危险因素对常规死亡率模型的影响。 我们使用性别分层的法国数据说明了这种提出的死亡率模型,重点是过去的温度和死亡率。 利用各种IPCC场景中的气候模型预测,我们研究了与温度有关的预期寿命的收益和损失以及极端热浪引起的额外死亡率,并通过在预测间隔中评估这一新的风险因素来量化它们。 此外,我们分析了法国大都会的地理差异。但是,气候变化将受到人口动态的影响,尤其是温度对死亡率的影响。在本文中,我们引入了一种新型方法,以使用多人口死亡率模型对预计死亡率进行影响。这种方法将随机死亡率模型与气候流行病学模型结合在一起,预测由于每日温度波动而导致的死亡率变化,无论是过度还是不足。这种方法的重要性在于它通过利用气候模型的温度预测来破坏死亡率预测的能力,并评估这种未指定的危险因素对常规死亡率模型的影响。我们使用性别分层的法国数据说明了这种提出的死亡率模型,重点是过去的温度和死亡率。利用各种IPCC场景中的气候模型预测,我们研究了与温度有关的预期寿命的收益和损失以及极端热浪引起的额外死亡率,并通过在预测间隔中评估这一新的风险因素来量化它们。此外,我们分析了法国大都会的地理差异。
“金融科技正在改变中东的金融业,特别是在移动支付、汇款和小额信贷领域,这有助于提高金融包容性并推动经济增长。数字支付解决方案在该地区迅速发展,中东正处于批准虚拟资产、去中心化金融和中央银行数字货币的阶段。中小企业和商家也在使用数字平台来改进业务流程和获取资金。中东正在迅速采用数字技术,智能手机普及率很高,因此电子商务、金融科技和云计算解决方案的采用也日益增多。数字化转型将推动各行各业的创新和生产力。” - Ayman A. Khaleq、William L. Nash III、Alishia K. Sullivan、Ksenia Andreeva、Sara K. Aranjo