咸水滴灌是解决干旱地区淡水短缺问题的一个潜在解决方案。然而,长期使用会使土壤盐分积累并降低磷 (P) 的有效性。生物炭和秸秆改良剂已被证明可以减轻这些影响,但它们在调节长期咸水灌溉下参与磷转化的微生物基因方面的机制仍不清楚。本研究旨在评估生物炭和秸秆掺入对盐灌棉田土壤微生物群落结构和磷有效性的影响。基于 14 年的田间试验,开发了三种处理方法:仅咸水灌溉 (CK)、咸水灌溉加生物炭 (BC) 和咸水灌溉加秸秆 (ST)。结果表明,这两种改良剂都显著提高了土壤含水量、有机碳、总磷、有效磷和无机磷组分 (Ca 10 -P、Al-P、Fe-P 和 OP),同时降低了土壤电导率和 Ca 2 -P 和 Ca 8 -P 组分。生物炭增加了 Chloro flexi、Gemmatimonadetes 和 Verrucomicrobia 的相对丰度,而秸秆则促进了 Proteobacteria 和 Planctomycetota 的丰度。两种处理均降低了几种 P 矿化基因(例如 phoD、phoA)的丰度并增加了与 P 溶解相关的基因(例如 gcd)。相关性研究表明,微生物种群和 P 循环基因与土壤特性紧密相关,其中 Ca 2 -P 和 Al-P 是重要的介质。通常,在长期含盐灌溉下,生物炭和秸秆改良剂可降低土壤盐分,提高土壤 P 的有效性,降低磷循环相关微生物基因的表达并改善土壤特性。这些结果使它们成为可持续土壤管理的绝佳技术。
最近的估计显示,在11月至12月,新德里及其周围城市的空气污染原因约为70%。不仅旁遮普邦和哈里亚纳邦,稻草燃烧在其他州都非常迅速。主要燃烧会导致CO2,CO,SOX,NOX,颗粒物和CH4的发射,从而大大增加空气污染和GHGS/碳足迹。悖论是,一方面,我们缺乏动物饲料,生物燃料和肥料,另一方面,浪费或燃烧了大量的作物残留物。这不仅是自然可再生资源的巨大损失,而且与此同时,它还是温室气体(GHG)排放和环境污染的来源。但是,这些残基可以有效地用作覆盖物,用于生产肥料,乙醇,生物柴油,生物炭等,以及在保护农业中。There are knowledge gaps on the economic technologies for in-situ and ex-situ composting of straw, characterization of rice straw of available varieties for various purposes, cost- effective small-scale technologies for bio-energy production, technologies for value addition of paddy straw in view of present day mechanized agriculture and authentic database on contribution of straw burning in air pollution and GHGs/ carbon footprint.
结果:发现分别显示出140和40%的CO 2和N 2 O的大幅增加。甲烷排放量增加了3%,而CO 2排放的最大效应值为2.66,氮速率<150 kg/hm 2。CH 4排放的效应值随土壤有机含量的降低而增加,CH 4排放的效应值从浓度> 6 g/kg时变为正变为正。随着氮速率增加,在稻草回流下的n 2 O排放效应最初增加然后减少。n 2 o排放量显着增加。随机森林模型的结果表明,在稻草返回下影响CO 2和N 2 O排放的最重要因素是施用的氮量,并且影响稻草返回下玉米领域的CH 4排放的最重要因素是土壤有机碳含量。
引用(温哥华):Das等。,生产用于改善沿海盐水沙质土壤的稻草生物炭。国际生物资源与压力管理杂志,2025年; 16(3),01-13。https://doi.org/10.23910/1.2025.5841。 版权所有:©2025 Das等。 这是根据Creative Commons Attribution-Nononcermercial-4.0国际许可证的条款分发的开放访问文章,允许在作者和源源后的任何媒介中不受限制地使用,分发和复制。 数据可用性声明:法律限制是对原始数据的公众共享施加的。 但是,作者有权根据要求以原始形式传输或共享数据,但要么符合原始同意的条件和原始研究研究。 此外,数据的访问需要满足用户是否符合道德和法律义务作为数据控制者的义务,以便允许在原始研究之外进行二次使用数据。 资金:LT-05项目的CSIR-IMMT环境与可持续发展部经济支持的工作。 利益冲突:作者宣布不存在利益冲突。https://doi.org/10.23910/1.2025.5841。版权所有:©2025 Das等。这是根据Creative Commons Attribution-Nononcermercial-4.0国际许可证的条款分发的开放访问文章,允许在作者和源源后的任何媒介中不受限制地使用,分发和复制。数据可用性声明:法律限制是对原始数据的公众共享施加的。但是,作者有权根据要求以原始形式传输或共享数据,但要么符合原始同意的条件和原始研究研究。此外,数据的访问需要满足用户是否符合道德和法律义务作为数据控制者的义务,以便允许在原始研究之外进行二次使用数据。资金:LT-05项目的CSIR-IMMT环境与可持续发展部经济支持的工作。利益冲突:作者宣布不存在利益冲突。
欧洲底部捕鱼联盟(EBFA)欢迎卡迪斯专员在海洋保护区(MPAS)内对底部拖网的平衡方法。在最近的讲话1中,专员强调了一项基于科学的战略在平衡生物多样性保护与可持续捕鱼实践之间的重要性。EBFA特别鼓励他专注于量身定制的评估和逐案评估,以确保决策是由证据而不是广泛假设驱动的。这种合理的方法长期以来由EBFA提倡,可以防止在当前和新的环境立法(例如《自然恢复法》》等新的环境立法下封闭捕捞区域。
从表型上看,编辑植物的营养生长与野生型相似。所选 8 个品系的果实质量参数显示,重量、长度、颜色和硬度均有所变化,具体取决于品系,其中大多数品系的长宽比低于野生型,与对照相比,转基因果实的伸长率较低且更方。此外,几乎所有编辑品系的果实硬度均显著增加,FaPG1 编辑程度与收获时的果实硬度之间存在明显的正相关关系。
科学的底部拖网调查是沿着大陆货架和海洋和海洋的斜坡进行的生态观察计划,这些计划采样了与海底相关的海洋社区。这些调查报告了时空的发生,丰度和/或体重的发生,并有助于渔业管理以及人口和生物多样性研究。底部拖网调查是在世界各地进行的,代表了了解海洋生物地理,宏观生态学和全球变化的独特机会。但是,将这些数据结合在一起以进行跨生态系统分析仍然具有挑战性。在这里,我们提供了一个综合数据集,该数据集由29个公开可获得的底段调查,在18个国家/地区的国家水域进行了标准化和预处理,总共涵盖了2,170个采样的鱼类分类单元,并从1963年至2021年收集了216,548次拖船。我们描述了创建数据集,标志和标准化方法的处理步骤,我们开发了这些方法,以帮助用户使用稳定的区域调查足迹进行时空分析。该数据集的目的是在全球变化的背景下支持研究,海洋保护和管理。
依赖关系:(其他委员会的工作会受到此建议的影响?如果是这样,则如何以及由哪个委员会?您需要在建立该建议之前从另一个委员会完成的可交付成果吗?该建议是基于委员会完成的以前的可交付成果还是由董事会完成的工作?)
抽象草莓在隧道下生长,以保护植物免受寒冷,霜冻,雨水和水果疾病的侵害。进行了审查,以确定塑料隧道下植物的性能。在隧道和开放田(n = 133实验)和两个区域的环境条件下收集有关产量和果实重量的信息。在全球分析中,隧道下的植物的相对销售(隧道/开放= 1.34±0.76)和总收率(隧道/开放式= 1.30±0.83)高于开放式(p <0.001)。相比之下,两个生长区域的果实体重相似(隧道/开放= 1.04±0.22)(p = 0.094)。在北欧和南欧以及北美和南美的植物中,相对可销售的收益率(隧道/开放式)相似(p> 0.05)。在凉爽或寒冷的冬季或春季/夏季或冬季/春季生产季节以及低隧道或高隧道的地区,相对销售的收益率相似(p> 0.05)。隧道下的较低的产率与塑料下的低光水平和高温相关,并且粉状霉菌的发生率较高。在全球变暖下使用隧道将需要注意盖下的通风。
氧气通过在呼吸过程中加速电子的转移来帮助生物产生能量。由于呼吸,微生物和海床的土壤动物自然释放二氧化碳。在有许多动物和有机碳的栖息地中,您通常具有海床的总呼吸(动物 +细菌)和高CO 2排放/排放。这种排放量最高,在海底的上层中,氧气大量存在,并且较高的温度加快了溶解的速度。在富含有机物质的细小沉积物中,氧气通常仅穿透表面下的1 mm。没有氧气,某些微生物仍然可以破坏有机碳,但是该过程要慢得多。如果干扰将有机碳暴露于氧气中,它将更快地分解为Co 2。