乳腺癌的首选治疗方法通常是手术切除。一些患者可能在手术前接受化疗或激素治疗等药物治疗,以帮助缩小癌症并使其更容易切除。这被称为新辅助治疗。手术后,患者可能需要接受其他治疗以摧毁任何残留的癌细胞并降低乳腺癌复发的风险。这种手术后的治疗被称为辅助治疗。
背景:高级别胶质瘤是原发性脑癌,过去 40 年来,尽管进行了手术切除和破坏 DNA 的化放疗,但世界卫生组织 4 级胶质瘤的生存率仍然低得令人无法接受,且持续为 10-16 个月。最近,肿瘤治疗场疗法 (TTFields) 已显示出适度的生存益处,并在多个国家获得临床批准。TTFields 人们认为主要通过破坏有丝分裂来介导抗癌活性。然而,最近的数据表明,TTFields 也可能减弱 DNA 损伤修复和复制叉动力学,为结合标准治疗方法和靶向 DNA 损伤反应抑制剂 (DDRi) 的治疗组合提供了潜在的平台。方法:我们将患者来源的、通常具有抗性的胶质瘤干细胞样细胞 (GSC) 与之前验证的临床前 Inovitro™ TTFields 系统以及多种治疗性 DDRi 结合使用。结果:我们发现 TTFields 可强效激活 PARP 和 ATR 介导的 DNA 修复(包括 PARylation 和 CHK1 磷酸化),而将 TTFields 与 PARP1 或 ATR 抑制剂治疗相结合可显著降低克隆形成存活率。放射治疗进一步增强了这些策略的效力,导致 DNA 损伤量增加,DNA 损伤消退时间大大延迟。结论:据我们所知,我们的研究结果是首次在 GSC 模型中将 TTFields 与临床批准或试验中的 DDRi 结合使用,并为针对目前无法治愈的肿瘤患者的多模式 DDRi/TTFields 治疗策略的转化研究提供了基础。
- 糖尿病的持续时间(通常是诊断以来10年以来10年) - HBA1C非常高的人,即HbA1c≥86mmol/mol-被认为高血糖急性影响的高风险,例如由于药物不遵守引起的脱水 - 活跃的足部疾病或足部溃疡的史 - 现有的糖尿病足溃疡/感染 - 先前的下肢截肢 - 外周动脉疾病的病史(PAD) - 服用磺酰氟烷和/或胰岛素的胰岛素 - 是否会增加sglt2222222222的胰岛素 - 胰岛素的风险增加,低血糖 - 具有DKA风险因素的人,例如胰岛素分泌细胞的低储备,限制食物摄入或可能导致严重脱水的疾病,胰岛素突然减少或因疾病或手术引起的胰岛素需求增加
[OR (95% CI)] 生物制剂初治人群 临床反应 a **************** **************** **************** 临床缓解 a **************** **************** **************** 生物制剂失败人群 临床反应 b **************** **************** **************** 临床缓解 b **************** **************** **************** 总体人群 全因停药 a **************** **************** **************** SAE b **************** **************** **************** a 随机效应模型 b 固定效应模型 缩写:CI:置信区间;NMA:网络荟萃分析;OR:优势比;SAE:严重不良事件
https://www.specs.net/index.php 9。 天然产品集合。 Microsource Discovery System Inc. 2022年7月23日访问。http://www.msdis covery.com/natpr od.html 10。 Berman HM,Westbrook J,Feng Z等。 蛋白质数据库。 核酸res。 2000; 28:235-242。 doi:10.1093/nar/28.1.235 11。 Trott O,Olson AJ。 自动库克Vina:通过新的评分功能,有效的优化和多线程提高对接的速度和稳定性。 J Comput Chem。 2010; 31(2):455-461。 doi:10.1002/jcc.21334 12。 Schrödinger软件。 Schrödinger,L.L.C。,纽约,纽约,美国2020年。 13。 McNutt,Francoeur P,Aggarwal R等。 gnina 1.0:深度学习的分子对接。 J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。https://www.specs.net/index.php 9。天然产品集合。Microsource Discovery System Inc. 2022年7月23日访问。http://www.msdis covery.com/natpr od.html 10。Berman HM,Westbrook J,Feng Z等。蛋白质数据库。核酸res。2000; 28:235-242。doi:10.1093/nar/28.1.235 11。Trott O,Olson AJ。自动库克Vina:通过新的评分功能,有效的优化和多线程提高对接的速度和稳定性。J Comput Chem。 2010; 31(2):455-461。 doi:10.1002/jcc.21334 12。 Schrödinger软件。 Schrödinger,L.L.C。,纽约,纽约,美国2020年。 13。 McNutt,Francoeur P,Aggarwal R等。 gnina 1.0:深度学习的分子对接。 J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。J Comput Chem。2010; 31(2):455-461。doi:10.1002/jcc.21334 12。Schrödinger软件。Schrödinger,L.L.C。,纽约,纽约,美国2020年。 13。 McNutt,Francoeur P,Aggarwal R等。 gnina 1.0:深度学习的分子对接。 J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。Schrödinger,L.L.C。,纽约,纽约,美国2020年。13。McNutt,Francoeur P,Aggarwal R等。gnina 1.0:深度学习的分子对接。J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。J Chem。2021; 13(1):1-20。doi:10.1186/ s13321-021-00522-2 14。 div>Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。Curr Comput-Aid药物。2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。2011; 7(2):146-157。doi:10.2174/157340911795677602 15。Durrant JD,McCammon JA。分子动力学模拟和药物发现。BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。BMC Biol。2011; 9(1):1-9。doi:10.1186/1741-7007-9-71 16。案例DA,Betz RM,Cerutti DS等。琥珀色。加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。加利福尼亚大学; 2016。17。Lindorff-Larsen K,Piana S,Palmo K等。改善了琥珀FF99SB蛋白力场的侧链旋转电位。蛋白质。J Chem Phys。2010; 78(8):1950-1958。doi:10.1002/prot.22711 18。Horn HW,Swope WC,Pitera JW等。开发了改进的生物分子模拟的四个位点水模型:tip4p-ew。2004; 120(20):9665-9678。 doi:10.1063/1.1683075 19。 Beauchamp KA,Lin YS,Das R,Pande vs。蛋白质场是否越来越好? 在524个不同的NMR测量值上进行系统基准。 J化学理论计算。 2012; 8(4):1409-1414。 doi:10.1021/ct2007814 20。 Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。 J Chem Inf模型。 2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2004; 120(20):9665-9678。doi:10.1063/1.1683075 19。Beauchamp KA,Lin YS,Das R,Pande vs。蛋白质场是否越来越好? 在524个不同的NMR测量值上进行系统基准。 J化学理论计算。 2012; 8(4):1409-1414。 doi:10.1021/ct2007814 20。 Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。 J Chem Inf模型。 2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。Beauchamp KA,Lin YS,Das R,Pande vs。蛋白质场是否越来越好?在524个不同的NMR测量值上进行系统基准。J化学理论计算。2012; 8(4):1409-1414。 doi:10.1021/ct2007814 20。 Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。 J Chem Inf模型。 2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2012; 8(4):1409-1414。doi:10.1021/ct2007814 20。Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。J Chem Inf模型。2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2018; 58(5):1037-1052。doi:10.1021/acs。JCIM.8B00026 21。Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。一般琥珀色场的开发和测试。J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。J Comput Chem。2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2004; 25(9):1157-1174。doi:10.1002/jcc.20035 22。Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。Comput Biol Med。2021; 134:104462。 doi:10.1016/j。compbiomed.2021.104462 23。Jakalian A,Bush BL,Jack DB,Bayly CI。快速,有效地产生高质量的原子电荷。AM1-BCC模型:I。方法。J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。J Comput Chem。2000; 21(2):132-146。doi:10.1002/jcc.10128 24。Jakalian A,Jack DB,Bayly CI。高,有效地生成高 -
会议空间已被分配用于在 2023 年 4 月 26 日至 4 月 30 日在德克萨斯州圣安东尼奥举行的肿瘤护理学会 (ONS) 第 48 届年会期间举办由白血病和淋巴瘤学会支持的研讨会。肿瘤护理学会分配会议空间并不意味着产品认可。
该文件已准备好与利益相关者进行咨询。它总结了已考虑的证据和观点,并规定了委员会提出的建议。尼斯邀请利益相关者的评论对此评估和公众。应阅读本文件与证据一起阅读(请参阅委员会论文)。