2024-25-11 IHP - 空间技术的重要合作伙伴:从处理器架构到卫星通信技术塑造欧洲空间技术和技术独立的未来法兰克福(奥得河畔)。IHP - 莱布尼茨高性能微电子研究所是一家领先的微电子和通信技术研究所,它通过其研究和解决方案为欧洲空间能力的进一步发展做出了重要贡献,从而为德国和欧洲的技术主权做出了贡献。多个项目 - Scale4Edge、COCHISA、MORAL 和 6G-TakeOff - 代表了 IHP 对发展欧洲空间领域能力的承诺,从处理器架构到卫星通信技术。欧盟资助的 MORAL 项目解决了小型卫星和其他空间应用对抗辐射、容错和无 ITAR(欧洲国际武器贸易条例)微控制器的迫切需求,支持任务控制、导航和地球观测。MORAL 微控制器基于 IHP 创新的 PEAKTOP 架构构建,确保在极端太空环境中的适应性和弹性。该芯片包括几个空间相关接口,例如 SpaceWire,以及 12 位 ADC 和 DAC。在 IHP SG13RH 中制造的 MORAL 微控制器在测试中表现出色,具有出色的可靠性和抗辐射性,为未来太空任务提供了巨大的应用潜力。MORAL 项目最近非常成功地完成,目前正在准备后续的市场开发步骤。Scale4Edge 项目由联邦教育和研究部 (BMBF) 资助,旨在提高航空航天应用微处理器的弹性和可靠性。 Scale4Edge 专注于开发基于 RISC-V 的容错多处理器系统,为航空电子、医疗、核能和空间应用打造高度可靠的硬件。欧洲项目 COCHISA 正在通过开发可扩展到各个频段并适用于各种卫星系统的欧洲波束成形核心芯片来满足日益增长的高数据速率卫星通信需求。通过设计 X 波段 (10 GHz) 和 Ka 波段 (28 GHz) 频率的核心芯片,COCHISA 实现了高效、高吞吐量的卫星基础设施。BMBF 资助的 6G-TakeOff 计划通过开发整体 3D 通信网络架构,专注于未来的连接。这种新的框架
类人机器人具有与Humans相似的形态,具有执行人类在日常生活中可以完成的各种任务和动作的潜力。,由于高维状态空间和控制性的综合性,发展具有人类类似人类的行为,从而限制了其现实世界的应用仍然具有挑战性。随着大规模Human运动数据集的可用性不断增长[4,45],一种解决这一挑战的实用方法是通过跟踪和模仿人类动作来复制多功能运动[8,20,23,24]。但是,在考虑硬件时,人形机器人和人类仍然完全不同,这阻碍了机器人完全复制人类运动的能力。这提出了一个令人信服的研究问题:鉴于它们的身体局限性,我们如何在保持其稳定性和稳健性的同时,追求人形机器人的表现力,类人类的能力?在本文中,我们引入了先进的表达全身控制(Exbody 2),这是一个有效的框架,可最大程度地揭示人形机器人对可行的全身运动的表现力。该框架属于SIM2REAL管道,该政策将采用参考运动运动作为输入,并输出控制真实类人动物以在现实世界中进行运动的动作。我们培训一项单一的政策,该政策跨越了不同的输入信息。我们确定了四种技术设计以实现这一目标:(i)构建可行且多样化的培训数据集。一些作品通过完善数据集解决了这一点。我们系统地分析数据集人类运动数据集(如Amass [45])通常包含超出机器人物理帽的复杂运动,从而使跟踪过于挑战和降低表现。前[8],例如,通过模棱两可的描述(例如“舞蹈”)仍然可以包含不合适的动作,从而滤除了使用语言标签的不可行动作。其他AP-PARACHES,例如H2O [24]和OmniH2O [24],采用SMPL模型来模拟虚拟类人动物并滤除复杂运动。但是,SMPL化身可以执行真正的机器人无法执行的操作,从而在模拟和现实世界可行性之间造成差距,从而仍会影响训练有效性。
IPCC AR6对与预计的21世纪气候变化相关的影响和风险的评估既令人震惊又模棱两可。根据计算机预测,根据全球气候模型(GCM)和用于模拟的共享社会经济途径(SSP)方案,全球表面温度可能会从1.3 c升至8.0 c。实际的气候变化危害分别高于工业前水平以上2.0 c和3.0 c,估计为高且非常高。最近的研究表明,大量的CMIP6 GCM运行“太热”了,因为它们似乎太敏感了,并且高/extreme排放场景SSP3-7.0和SSP5-8.5被拒绝,因为被判断为不可能,并且非常不可能。然而,IPCC AR6主要集中在此类警报方案上进行风险评估。本文研究了通过评估理论模型并将其与有关全球变暖的现有经验知识和气候变化的各种自然周期相结合而产生的21世纪“现实”气候变化预测的影响和风险。这是通过组合SSP2-4.5场景(根据国际能源机构报告的当前政策)和经验优化的气候建模来实现的。所提出的方法旨在模拟假设模型,以最佳地缩小实际可用数据。2023中国地球科学大学(北京)和北京大学。根据最近的研究,GCM宏观集合表明,从1980年到1990年到1990年至2012年至20122年观察到的最佳后广集应由以低平衡气候敏感性(ECS)(1.5 c i表明,具有SSP2-4.5场景的低ECS宏GCM的全球表面温度变暖为1.68–3.09 c,到2080-2100,而不是1.98–3.82 C,而在2.5-4.0 c范围内使用ECS获得的GCMS获得了1.98–3.82 C。 然而,如果全球表面温度记录受signi-fir-lim-lim-lim-plimator的温暖偏见的影响 - 如卫星基于卫星的较低对流层温度记录和有关城市热岛影响的最新研究所示,应将相同的气候模拟降低约30%,约为1.18-2.16 c,缩放约1.18-2.16 c,分别为2080-2100-2100-2100-2100-2100-2100。 此外,类似的中等变暖估计值(1.15–2.52 c)也通过替代性衍生的模型预测,旨在重新创建十年至千年至千年的天然气候振荡,而GCMS并未再生。 获得的气候预测表明,21世纪的预期全球表面变暖可能是温和的,即不超过2.5-3.0 c,平均而言,可能低于2.0 c的阈值。 这应该允许通过适当的低成本适应政策来缓解和管理最危险的气候变化危害。 由Elsevier B.V.代表中国地球科学大学(北京)出版。i表明,具有SSP2-4.5场景的低ECS宏GCM的全球表面温度变暖为1.68–3.09 c,到2080-2100,而不是1.98–3.82 C,而在2.5-4.0 c范围内使用ECS获得的GCMS获得了1.98–3.82 C。然而,如果全球表面温度记录受signi-fir-lim-lim-lim-plimator的温暖偏见的影响 - 如卫星基于卫星的较低对流层温度记录和有关城市热岛影响的最新研究所示,应将相同的气候模拟降低约30%,约为1.18-2.16 c,缩放约1.18-2.16 c,分别为2080-2100-2100-2100-2100-2100-2100。此外,类似的中等变暖估计值(1.15–2.52 c)也通过替代性衍生的模型预测,旨在重新创建十年至千年至千年的天然气候振荡,而GCMS并未再生。获得的气候预测表明,21世纪的预期全球表面变暖可能是温和的,即不超过2.5-3.0 c,平均而言,可能低于2.0 c的阈值。这应该允许通过适当的低成本适应政策来缓解和管理最危险的气候变化危害。由Elsevier B.V.代表中国地球科学大学(北京)出版。总而言之,不需要强制实施昂贵的脱碳和零零排放方案,例如SSP1-2.6,因为在整个21世纪保持全球变暖<2 C的巴黎协议温度目标也应与中等且务实的共享社会经济途径兼容,例如SSP2-4.5。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
[AAR] Scott Aaronson。量子信息科学简介注释。url:https://www.scottaaronson.com/qclec.pdf(cit。p。 2)。[BB13] Rachid El Bansarkhani和Johannes Buchmann。“基于晶格的签名方案的改进和有效的影响”。in:Cryptog -raphy的选定地区 - SAC 2013 - 第20届国际会议,加拿大卑诗省BUNBAN,2013年8月14日至16日,修订了选定的论文。ed。Tanja Lange,Kristin E. Lauter和Petr Lisonek。 卷。 8282。 计算机科学中的注释。 Springer,2013年,pp。 48–67。 doi:10.1007/978-3-662-43414-7 \ _3。 url:https://doi.org/10.1007/978-3-662-43414-7%5C_3(cit。 p。 6)。 [BG14] Shi Bai和Steven D. Galbraith。 “基于学习错误的签名改进的压缩技术”。 in:Cryptology -CT -RSA 2014年的主题 - 2014年RSA会议上的加密摄影师曲目,美国加利福尼亚州旧金山,2014年2月25日至28日,美国加利福尼亚州。。 程序。 ed。 Josh Benaloh。 卷。 8366。 计算机科学中的注释。 Springer,2014年,pp。 28–47。 doi:10.1007/978- 3- 319-04852-9 \ _2。 URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。> p。 6)。 [bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。 “混合密钥封装机制和身份验证的钥匙交换”。 :量词后密码学的国际会议。Tanja Lange,Kristin E. Lauter和Petr Lisonek。卷。8282。计算机科学中的注释。Springer,2013年,pp。48–67。doi:10.1007/978-3-662-43414-7 \ _3。url:https://doi.org/10.1007/978-3-662-43414-7%5C_3(cit。p。 6)。[BG14] Shi Bai和Steven D. Galbraith。“基于学习错误的签名改进的压缩技术”。in:Cryptology -CT -RSA 2014年的主题 - 2014年RSA会议上的加密摄影师曲目,美国加利福尼亚州旧金山,2014年2月25日至28日,美国加利福尼亚州。程序。ed。Josh Benaloh。 卷。 8366。 计算机科学中的注释。 Springer,2014年,pp。 28–47。 doi:10.1007/978- 3- 319-04852-9 \ _2。 URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。> p。 6)。 [bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。 “混合密钥封装机制和身份验证的钥匙交换”。 :量词后密码学的国际会议。Josh Benaloh。卷。8366。计算机科学中的注释。Springer,2014年,pp。28–47。 doi:10.1007/978- 3- 319-04852-9 \ _2。 URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。> p。 6)。 [bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。 “混合密钥封装机制和身份验证的钥匙交换”。 :量词后密码学的国际会议。28–47。doi:10.1007/978- 3- 319-04852-9 \ _2。URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。p。 6)。[bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。“混合密钥封装机制和身份验证的钥匙交换”。:量词后密码学的国际会议。url:p。 2)。Joppe W. Bos,Leo Ducas,Eike Kiltz,TranèdeLepoint,Lyubashevsky Badadim,John M. Schvanck,Peter Schwabe,Gregory Seiler和DamienStehlé。“晶体-Kyber。in。 2018 IEE欧洲研讨会和隐私,欧元和P 2018,英国伦敦,2018年4月24日至26日。IEEE,2018年,pp。 353–367。 doi:10.1109/eurosp.2 url:https://也是如此。 org/1109/eUROSP.2 p。 7)。 Cong Chen,Oussama Danba,William,Will Schwabe,John Schwabe,William Whyte,Zhenfei Zhang,Tsunekazu Saito,Takashi Yamakawa和Keita Xagawa。 ntru - 提交NIST Quantum项目。 https://ntru.org/f/ntru-2019030.pdf 2019(cit。 p。 7)。 [DN12] Leo Ducases和Phong Q. Nguyen。 in:加密技术的进展 - Asiacrypt 2012 处理。 ed。 Xiaoyun Wang和Kazue Sako。 卷。 7658。 阅读计算机科学笔记。 Springer,2012年,pp。 415–432。 doi:10.1007/978-34-642-34961-4 \ _2 url://doi.org/10.1007/978-3- 642-34961-4%5C_26(cid。 p。 7)。 处理。 ed。IEEE,2018年,pp。353–367。doi:10.1109/eurosp.2url:https://也是如此。org/1109/eUROSP.2p。 7)。Cong Chen,Oussama Danba,William,Will Schwabe,John Schwabe,William Whyte,Zhenfei Zhang,Tsunekazu Saito,Takashi Yamakawa和Keita Xagawa。ntru - 提交NIST Quantum项目。https://ntru.org/f/ntru-2019030.pdf 2019(cit。 p。 7)。 [DN12] Leo Ducases和Phong Q. Nguyen。 in:加密技术的进展 - Asiacrypt 2012 处理。 ed。 Xiaoyun Wang和Kazue Sako。 卷。 7658。 阅读计算机科学笔记。 Springer,2012年,pp。 415–432。 doi:10.1007/978-34-642-34961-4 \ _2 url://doi.org/10.1007/978-3- 642-34961-4%5C_26(cid。 p。 7)。 处理。 ed。https://ntru.org/f/ntru-2019030.pdf2019(cit。p。 7)。[DN12] Leo Ducases和Phong Q. Nguyen。in:加密技术的进展 - Asiacrypt 2012处理。ed。Xiaoyun Wang和Kazue Sako。卷。7658。阅读计算机科学笔记。Springer,2012年,pp。415–432。doi:10.1007/978-34-642-34961-4 \ _2url://doi.org/10.1007/978-3- 642-34961-4%5C_26(cid。p。 7)。处理。ed。[GLP12]TimGüneysu,Vadim Lyubashevsky和ThomasPöppelmann。“基于晶格的密码学:嵌入式系统的签名方案”。in:加密硬件和嵌入式系统 - CHES 2012-11届国际研讨会,比利时,比利时,2012年9月9日至12日。由伊曼纽尔·普鲁(Emmanuel Prou)和帕特里克·舒蒙特(Patrick Schaumont)作者。卷。7428。计算机科学中的注释。Springer,2012年,pp。530–547。DOI:10.1007/978-3-642-33027-8 \ _31。url:https://doi.org/10.1007/978-3-642-33027-8%5C_31(cit。p。 7)。[GNR10] Nicolas Gama,Phong Q. Nguyen和Oded Regev。“使用treme修剪的晶格枚举”。in:密码学的进展 - 2010年Eurocrypt。ed。henri Gilbert。柏林,海德堡:斯普林格柏林海德堡,2010年,pp。257–278(cit。p。 4)。[HHK17] Dennis Hofheinz,KathrinHövelmanns和Eike Kiltz。“对富士基 - 奥卡本转换的模块化分析”。在:密码学理论 - 第15届国际会议,TCC 2017,美国马里兰州巴尔的摩,2017年11月12日至15日,会议记录,第一部分。ed。Yael Kalai和Leonid Reyzin。 卷。 10677。 计算机科学中的注释。 Springer,2017年,pp。 341–371。 doi:10.1007/978-3-319-70500-2 \ _12。 URL:https://doi.org/10.1007/978-3-319-70500-2%5C_12(cit。> p。 6)。Yael Kalai和Leonid Reyzin。卷。10677。计算机科学中的注释。Springer,2017年,pp。341–371。doi:10.1007/978-3-319-70500-2 \ _12。URL:https://doi.org/10.1007/978-3-319-70500-2%5C_12(cit。> p。 6)。URL:https://doi.org/10.1007/978-3-319-70500-2%5C_12(cit。p。 6)。