简介与背景。AI 虚拟助手具有巨大潜力,可帮助患者自我评估症状并在适当时寻求进一步治疗,从而减轻医疗系统负担过重的压力。为了使这些系统对全球医疗保健做出有意义的贡献,它们必须得到患者和医疗专业人员的信任,并满足不同地区和不同人群患者的需求。我们基于概率图模型 (PGM) 开发了 AI 虚拟助手,并证明它能够为患者提供分类和诊断信息,其临床准确性和安全性可与人类医生相媲美。重要的是,此次评估评估了 AI 和人类医生的准确性和安全性,并且与之前的研究不同,它还考虑了两种代理的信息收集过程 [ 1 , 2 ]。通过这种方法,我们希望通过直接将人工智能系统的表现与人类医生进行比较,建立对人工智能系统的信任,因为人类医生并不总是同意患者症状的原因或最合适的分诊建议。至关重要的是,该系统基于生成模型,允许相对直接的重新参数化,以反映不同地区和人口群体的当地疾病负担。这是一个很有吸引力的特性,特别是考虑到人工智能虚拟助手有可能在全球范围内改善医疗保健服务时。方法。我们的人工智能系统的核心是 PGM [ 3 ],旨在为用户提供分诊建议并提出可能的病症。图形模型的结构由医学专家定义,并通过流行病学数据和专家引出的组合进行参数化。给定一组用户输入的当前症状和风险因素,该模型推断出最可能的情况并生成后续问题 [ 4 , 5 , 6 , 7 ]。该系统的决策功能是通过使用效用模型扩展底层生成模型来提供的,该效用模型作为疾病后验的函数,旨在提供分类建议,以最大限度地减少对患者的预期伤害,同时也惩罚过度分类。