典型的TTA-UC发生在敏化剂和歼灭器发色团的集合中,在吸收低能光子后,激发敏化剂的激发三重态通过dexter Energy转移(DET)敏感,然后通过Dexter Energy Transfress(DET)启用TTTA,然后进行TTA产生高F能量能量发射的单元状态。在两个低能三重态耦合时形成较高能量单线状态的过程由统计概率因子(F)描述,如图1。然而,关于各种歼灭者的F及其对不同光che和能量参数的依赖性的F存在很大的歧义。在这项工作中,我们通过实验性地评估了pery灭灭液的F,并讨论了F对能量差距定律的依赖性,以优化对高F因子的歼灭者的合适能量设计。根据Glebsch – Gordan系列,三胞胎状态的强交换耦合可能会导致具有3个自旋多重性(1个单线,3个三重率和5个Quintets)的九个可能的三重旋转特征态。14三胞胎耦合可以简单地由海森伯格的旋转仅哈密顿式(1)来定义。15,16
摘要 材料从液态到固态的快速光化学转化(即固化)使得制造用于微电子、牙科和医学的现代塑料成为可能。然而,工业化的光固化材料仍然局限于由高能紫外光驱动的单分子键均裂反应(I 型光引发)。这种狭窄的机制范围既对高分辨率物体的生产提出了挑战,也限制了可使用新兴制造技术(例如 3D 打印)生产的材料。在此,我们开发了一种基于三重态-三重态湮没上转换 (TTA-UC) 的光系统,该系统可在低功率密度(<10 mW/cm 2 )和环境氧气存在下使用绿光有效驱动 I 型光固化过程。该系统还表现出其固化深度对曝光强度的超线性依赖性,从而提高了空间分辨率。这使得 TTA-UC 首次集成到廉价、快速、高分辨率的制造工艺——数字光处理 (DLP) 3D 打印中。此外,相对于传统的 I 型和 II 型(光氧化还原)策略,目前的 TTA-UC 光引发方法可改善固化深度限制和树脂储存稳定性。本报告提供了一种用户友好的途径,可在环境光化学过程中利用 TTA-UC,并为制造具有更高几何精度和功能的下一代塑料铺平了道路。
1-不同疾病研究小组中的免疫反应,医学实验室科学系,应用医学科学学院,国王阿卜杜勒齐兹大学,沙特阿拉伯吉达。2中心基因组医学研究的卓越中心,沙特阿拉伯吉达国王阿卜杜勒齐兹大学。https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。 :( 00966568026868)。 摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。 指定的聚合物纳米成型(N.F.) 基于在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。 我们生产并表征了N.F. 硫化壳壳中包裹的环孢菌素(T.C.) 透明质酸(H.A.)的最外层涂层。 研究中的研究证实了H.A. 在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。 当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。 ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。 XRD验证了其晶体学性质,该性质呈现N.F. DSC证明了N.F. 它显示了合成的N.F.https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。:( 00966568026868)。摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。指定的聚合物纳米成型(N.F.)在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。我们生产并表征了N.F.硫化壳壳中包裹的环孢菌素(T.C.)透明质酸(H.A.)的最外层涂层。研究中的研究证实了H.A.在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。XRD验证了其晶体学性质,该性质呈现N.F.DSC证明了N.F.它显示了合成的N.F.特别有助于局部药物输送系统(DDS),SEM和TEM揭示具有光滑外部的圆形纳米颗粒。在高温下是稳定的。NF显示了85%的药物封装,对药物释放的动力学研究表明N.F.在低pH值下遵守Higuchi模型的分散模型。与典型的CSA在12小时内立即释放相反,维特罗的研究表明,pH 7.4和6.8的连续溶解延长,最多72小时。与原始环孢素相比,使用MTT测试对正常乳腺上皮细胞和三重阴性乳腺癌细胞进行了测试,对用环孢菌素封装的THC-HA的体外肿瘤预防特性进行了测试。在降低浓度及其对正常细胞的有效性下的强大细胞毒性潜力。这些特征提高了准备好的新型N.F.S作为有效的药物成分和对癌症的有效治疗部分的长期活力,有效性和主动靶向。关键词:乳腺癌,CD44,环孢菌素,透明质酸,纳米型,三阴性乳腺癌,硫醇壳聚糖,靶向化学治疗药物的靶向
1-不同疾病研究小组中的免疫反应,医学实验室科学系,应用医学科学学院,国王阿卜杜勒齐兹大学,沙特阿拉伯吉达。2中心基因组医学研究的卓越中心,沙特阿拉伯吉达国王阿卜杜勒齐兹大学。https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。 :( 00966568026868)。 摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。 指定的聚合物纳米成型(N.F.) 基于在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。 我们生产并表征了N.F. 硫化壳壳中包裹的环孢菌素(T.C.) 透明质酸(H.A.)的最外层涂层。 研究中的研究证实了H.A. 在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。 当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。 ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。 XRD验证了其晶体学性质,该性质呈现N.F. DSC证明了N.F. 它显示了合成的N.F.https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。:( 00966568026868)。摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。指定的聚合物纳米成型(N.F.)在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。我们生产并表征了N.F.硫化壳壳中包裹的环孢菌素(T.C.)透明质酸(H.A.)的最外层涂层。研究中的研究证实了H.A.在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。XRD验证了其晶体学性质,该性质呈现N.F.DSC证明了N.F.它显示了合成的N.F.特别有助于局部药物输送系统(DDS),SEM和TEM揭示具有光滑外部的圆形纳米颗粒。在高温下是稳定的。NF显示了85%的药物封装,对药物释放的动力学研究表明N.F.在低pH值下遵守Higuchi模型的分散模型。与典型的CSA在12小时内立即释放相反,维特罗的研究表明,pH 7.4和6.8的连续溶解延长,最多72小时。与原始环孢素相比,使用MTT测试对正常乳腺上皮细胞和三重阴性乳腺癌细胞进行了测试,对用环孢菌素封装的THC-HA的体外肿瘤预防特性进行了测试。在降低浓度及其对正常细胞的有效性下的强大细胞毒性潜力。这些特征提高了准备好的新型N.F.S作为有效的药物成分和对癌症的有效治疗部分的长期活力,有效性和主动靶向。关键词:乳腺癌,CD44,环孢菌素,透明质酸,纳米型,三阴性乳腺癌,硫醇壳聚糖,靶向化学治疗药物的靶向
DNA 重复域内的 DNA 序列改变莫名其妙地增强了中断重复域的稳定性并延迟了其扩展。在这里,我们提出了合理化这种意外结果的机制。具体而言,我们描述了 DNA 重复域的中断如何通过引入环迁移的能量障碍来限制可用于动态、滑出、重复凸起环的集合空间。我们解释了这种障碍是如何产生的,因为一些可能的环异构体会导致重复域双链部分出现能量昂贵的错配。我们认为,集合空间的减少是导致观察到的重复 DNA 扩展延迟的原因。我们进一步假设,在某些扩展 DNA 中观察到的中断重复的丢失反映了环异构体位置的瞬时占据,这导致双链体茎因能量障碍的“泄漏”而出现错配。我们认为,如果这种低概率事件的寿命允许错配修复系统识别,那么就可以发生重复中断的“修复”;从而合理化了最终扩增的 DNA“产品”中没有出现中断的原因。我们提出的机制途径为被描述为“令人费解”的观察结果提供了合理的解释,同时也对一组具有生物医学重要性的耦合基因型现象提供了深刻的见解,这些现象描绘了 DNA 折纸热力学和表型疾病状态之间的联系。
gualtar校园明尼奥大学生物工程,4710-057 Braga,葡萄牙B LABELS-BALES-COSSIATIAD实验室,4710-057 Braga,葡萄牙C C C CI Life and Health Sciences研究所(ICVS) Braga/Guimar〜AES,葡萄牙和癌症生物学系,Metastais研究中心,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州休斯顿市,美国美国德克萨斯州休斯敦市,F Molecugy Research Center g Molecugy Research G实验室(LIM 14)波尔图,4200 - 135年,波尔图,波尔图,葡萄牙I I杀菌学和基因组学实验室,医学院,医学院科伊布拉大学,葡萄牙J葡萄牙J研究中心。科伊米布拉(Coimbra),医学院(Pole 1)3004-504葡萄牙,葡萄牙L Univ Coimbra-Coimbra coimbra的Coimbra - Cibb,Cibb,Cibb,Pharmeracy of Health Sciences of Health Sciences of Health Sciences,Santa Comba Azinhaga,Azinhaga,3000-548 Coimbra,cimbra,cimbra,coimbra,coimbra,coimbra,cimbra in nary of Bellecl of Billiarl of Bellecl of Billiarl of Billielar of Biibra and cillortar生物学,贝勒,贝勒,贝勒,贝勒,贝勒医学院,美国德克萨斯州休斯敦,美国gualtar校园明尼奥大学生物工程,4710-057 Braga,葡萄牙B LABELS-BALES-COSSIATIAD实验室,4710-057 Braga,葡萄牙C C C CI Life and Health Sciences研究所(ICVS) Braga/Guimar〜AES,葡萄牙和癌症生物学系,Metastais研究中心,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州休斯顿市,美国美国德克萨斯州休斯敦市,F Molecugy Research Center g Molecugy Research G实验室(LIM 14)波尔图,4200 - 135年,波尔图,波尔图,葡萄牙I I杀菌学和基因组学实验室,医学院,医学院科伊布拉大学,葡萄牙J葡萄牙J研究中心。科伊米布拉(Coimbra),医学院(Pole 1)3004-504葡萄牙,葡萄牙L Univ Coimbra-Coimbra coimbra的Coimbra - Cibb,Cibb,Cibb,Pharmeracy of Health Sciences of Health Sciences of Health Sciences,Santa Comba Azinhaga,Azinhaga,3000-548 Coimbra,cimbra,cimbra,coimbra,coimbra,coimbra,cimbra in nary of Bellecl of Billiarl of Bellecl of Billiarl of Billielar of Biibra and cillortar生物学,贝勒,贝勒,贝勒,贝勒,贝勒医学院,美国德克萨斯州休斯敦,美国gualtar校园明尼奥大学生物工程,4710-057 Braga,葡萄牙B LABELS-BALES-COSSIATIAD实验室,4710-057 Braga,葡萄牙C C C CI Life and Health Sciences研究所(ICVS) Braga/Guimar〜AES,葡萄牙和癌症生物学系,Metastais研究中心,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州休斯顿市,美国美国德克萨斯州休斯敦市,F Molecugy Research Center g Molecugy Research G实验室(LIM 14)波尔图,4200 - 135年,波尔图,波尔图,葡萄牙I I杀菌学和基因组学实验室,医学院,医学院科伊布拉大学,葡萄牙J葡萄牙J研究中心。科伊米布拉(Coimbra),医学院(Pole 1)3004-504葡萄牙,葡萄牙L Univ Coimbra-Coimbra coimbra的Coimbra - Cibb,Cibb,Cibb,Pharmeracy of Health Sciences of Health Sciences of Health Sciences,Santa Comba Azinhaga,Azinhaga,3000-548 Coimbra,cimbra,cimbra,coimbra,coimbra,coimbra,cimbra in nary of Bellecl of Billiarl of Bellecl of Billiarl of Billielar of Biibra and cillortar生物学,贝勒,贝勒,贝勒,贝勒,贝勒医学院,美国德克萨斯州休斯敦,美国gualtar校园明尼奥大学生物工程,4710-057 Braga,葡萄牙B LABELS-BALES-COSSIATIAD实验室,4710-057 Braga,葡萄牙C C C CI Life and Health Sciences研究所(ICVS) Braga/Guimar〜AES,葡萄牙和癌症生物学系,Metastais研究中心,德克萨斯大学医学博士Anderson癌症中心,美国德克萨斯州休斯顿市,美国美国德克萨斯州休斯敦市,F Molecugy Research Center g Molecugy Research G实验室(LIM 14)波尔图,4200 - 135年,波尔图,波尔图,葡萄牙I I杀菌学和基因组学实验室,医学院,医学院科伊布拉大学,葡萄牙J葡萄牙J研究中心。科伊米布拉(Coimbra),医学院(Pole 1)3004-504葡萄牙,葡萄牙L Univ Coimbra-Coimbra coimbra的Coimbra - Cibb,Cibb,Cibb,Pharmeracy of Health Sciences of Health Sciences of Health Sciences,Santa Comba Azinhaga,Azinhaga,3000-548 Coimbra,cimbra,cimbra,coimbra,coimbra,coimbra,cimbra in nary of Bellecl of Billiarl of Bellecl of Billiarl of Billielar of Biibra and cillortar生物学,贝勒,贝勒,贝勒,贝勒,贝勒医学院,美国德克萨斯州休斯敦,美国
靶向疗法增加了三阴性乳腺癌患者的治疗选择。然而,可靶向的生物标志物的缺乏和肿瘤异质性限制了精准引导干预措施充分发挥其潜力。作为亲和靶向配体,适体对靶分子表现出高选择性。与抗体相比,适体的分子量更低、运输过程中的稳定性更高、免疫原性更低、组织摄取量更高。最近,我们报告了 GreenB1 适体的发现,它可以在培养的三阴性 MDA-MB-231 人乳腺癌细胞中内化。我们发现 GreenB1 适体特异性地靶向 b 1-整合素,这是一种先前与乳腺癌细胞侵袭性和迁移有关的蛋白质。适体以低纳摩尔亲和力与 b 1-整合素结合。我们的研究结果表明 GreenB1 引导的精准药物在诊断和治疗过度表达 b 1-整合素的癌症方面具有潜在的应用。
三阴性乳腺癌 (TNBC) 具有高度侵袭性,可用的治疗方法有限。肿瘤微环境 (TME) 中的基质细胞在 TNBC 进展中至关重要;然而,对 TNBC 中基质细胞活化和肿瘤-基质串扰的分子基础的了解有限。为了研究 TNBC 基质微环境中的治疗靶点,我们使用了一种称为血管化微肿瘤 (VMT) 的先进人类体外微生理系统。使用单细胞 RNA 测序 (scRNA-seq),我们发现正常的乳腺组织基质细胞会激活 TNBC TME 中的肿瘤信号通路。通过将 VMT 中的相互作用与临床数据进行比较,我们确定了具有潜在临床意义的肿瘤-基质界面治疗靶点。将针对 Tie2 信号的治疗与紫杉醇相结合可使血管正常化并提高紫杉醇在 TNBC VMT 中的疗效。Her3 和 Akt 的双重抑制也显示出对 TNBC 的疗效。这些数据证明了诱导有利的 TME 作为 TNBC 的靶向治疗方法的潜力。
基于运动的分层方程(HEOM)计算,我们从理论上研究了连接到两个储层的三角形三量子点(TTQD)环的相应控制。我们最初通过添加偏置电压并进一步调节量子点之间的耦合强度来证明,偏置引起的手性电流将通过顺时针向逆时针方向转换,并触发前所未有的有效霍尔角。转换非常快速,相应的特征时间为80-200 ps。另外,通过添加磁性弹力来补偿原始系统中的手性电流,我们阐明了施加的磁性环与浆果相之间的关系,该相位可以直接测量手性电流并揭示磁电耦合关系。