1 10 控制与门(1 至 2 个量子比特) 混合超导-半导体单重态-三重态量子比特的高保真两量子比特门 1 11 控制与门(1 至 2 个量子比特) 硅自旋量子比特中的组合 SWAP 门 1 12 控制与门(1 至 2 个量子比特) 用于半导体自旋量子比特的基于穿梭的完整量子门 1 13 控制与门(1 至 2 个量子比特) 基于测量的编码自旋量子比特状态操控方法 2 4 控制与门(1 至 2 个量子比特) 半导体自旋量子比特的系统高保真操作和传输 2 5 控制与门(1 至 2 个量子比特) 仅使用柱塞门对称控制交换耦合 2 6 控制与门(1 至 2 个量子比特) 量子系统中的非绝热几何门平面锗量子点器件 2 7 控制和门(1 至 2 个量子比特)基于门集层析成像的数值噪声模拟 2 8 控制和门(1 至 2 个量子比特)半导体量子点中自旋量子比特的多种双量子比特门集
Nomenclature for acyclic compounds only (trivial and IUPAC), DBE, hybridization(sp", n= 1,2,3) of C, N, O, halogens, bond distance, bond angles, VSEPR, shapes of molecules, inductive and field effects, bond energy, bond polarity and polarizability, dipole moment, resonance, resonance energy, steric inhibition of resonance,过度结合,𝞹 -M.环,带电的系统3,4,5,7环,融合点,熔点,沸点,氢化热,燃烧热,氢键(内部和分子间),冠 - 酸,酸度的概念,碱性反应中间体:碳定位,碳纤维,自由基,卡宾和硝基的结构和稳定性。
在非中心对称超导体中,这对势具有均匀的单元和奇数三重态成分。如果打破了时间传感对称性,则这些组件的超导阶段是不相同的,例如在Anapole超导体中。在本文中表明,通过两个组分之间的相位差异打破时间反转对称性,显着改变了状态的密度和S +螺旋P波超导体中的电导。S +手性p波超频导导管中的状态密度和电导量通过添加相位差的影响较小,因为S + P波超导体中的时间反转对称性已经损坏。田中纳扎罗夫边界条件延伸到3D超导体,使我们能够研究更多的超导体,例如Balian-Werthamer超导体,其中D矢量的方向与动量方向平行。结果对于确定潜在的时间交流对称性损坏的非中心对称超导体中的配对电位很重要。
描述:神经形态传感和计算可用于设计机器人的低延迟感知。为了充分利用低延迟和低功率范式,我们旨在设计端到端的尖峰机器人系统,依靠事件驱动的感觉编码,神经形态计算和尖峰运动控制,所有这些都在神经形态硬件[1]上实现。为此,我们计划使用受脑启发的计算原始剂,以有限且嘈杂的资源来生成可靠的行为[2]。我们将基于最近的工作,展示了通过三联尖峰触发的可塑性,基础神经节启发的抑制作用和竞争性竞争力网络[1]的研究,并通过平衡的混乱动力学吸引力来产生稳定的轨迹[3,4]。作为玩具问题,我们将使用ICUB机器人并使用开发的网络进行笔迹。
欧拉著名问题的 36 个官员问题的负解意味着不存在两个六阶正交拉丁方。我们证明,只要官员们相互纠缠,这个问题就有解,并构造出这种大小的正交量子拉丁方。结果,我们找到了一个长期难以捉摸的绝对最大纠缠态 AME(4,6) 的例子,它由四个子系统组成,每个子系统有六个级别,等效于一个大小为 36 的 2 酉矩阵,它可以最大化这个维度的所有二分酉门之间的纠缠能力,或者一个完美的张量,有四个指标,每个指标从一到六。这种特殊状态应该被称为黄金 AME 状态,因为黄金比率在它的元素中占有突出地位。这个结果使我们能够构造一个纯非加性六方量子误差检测码 ðð 3 ; 6 ; 2ÞÞ6,它饱和了单例边界并允许人们将六级状态编码为三重态。
使用电气传输和射频磁敏感性的测量结果,研究了Laniga 2的Single晶体的超导晶体的超导相。发现伦敦穿透深度随温度呈指数变化,表明费米表面完全间隙。推断的超流体密度接近单间隙弱耦合各向同性S-波超导体的密度。超导性对于通过电子辐照引起的非磁点样疾病非常健壮。我们的结果通过需要微调的杂质散射幅度来对先前提出的三重态配对状态施加强大的限制,并且最自然地通过具有符号的签名,弱耦合和近似动量独立的单线超导状态来解释Laniga 2中,这不会破坏时间反向对称性。我们讨论了如何将我们的发现与以前指示超导阶段的磁性特征的测量值核对。
[5] D.M.sernd和al,ieee trans。苹果。Supercond。,34(3),(2024),Art。否。78000107,sernd and,2024,16(3),407; https://www.mdpi.com/2073-4360/407/4 https://www.mdpi.com.com/2073-4360/9/9/9] G. Arduini等, “ MCBC和MCBY LHC磁铁聚合物磁铁的学生产量,” EDMS No.2861509,2023年3月[10] C. Scheparion,D.M。Parth,J。Vielhauer,A。Gaarud。 https://indication.cert。
摘要:使用簇关联展开 (CCE) 方法计算了 45 种不同二维主体材料中 69 个三重态缺陷中心的自旋相干时间,其中自旋哈密顿量参数来自密度泛函理论 (DFT)。发现几个三重态表现出非常大的自旋相干时间,这使得它们对量子信息处理很有吸引力。系统地研究了自旋相干时间对各种因素的依赖性,包括超精细耦合强度、偶极-偶极耦合和核 g 因子。分析表明,自旋相干时间对缺陷中心的原子细节不敏感,而是由主体材料的核自旋特性决定的。然后使用符号回归推导出自旋相干时间的简单表达式,该表达式在回归模型未发现的 55 个双重态缺陷测试集上进行了验证。简单的表达式允许对自旋相干时间进行数量级估计,而无需昂贵的第一原理计算。
摘要背景:胃癌是全球癌症死亡的主要原因。已经研究了几种治疗可能性,但只有少数显示出临床意义的结果。摘要:近年来,晚期胃癌(AGC)的全身治疗方案已进化,增强了这种疾病的分子知识的日益增长。分子分析(至少对于HER-2-表达,微卫星不稳定性状况,Epstein-Barr Vi-Rus表达和编程的死亡配体表达/组合阳性评分[CPS])是在系统治疗之前的所有Ther-APY-FIT患者的,并且是针对治疗策略和药物的决策。各种示例,例如在HER-2阳性亚组中应用曲妥珠单抗从一线设置开始的这种方法的好处。铂和氟嘧啶的结合仍然是治疗晚期胃癌的一线Che-Marteabonebone。三胞胎组合添加紫杉虫的双重组合
随着计算认知神经科学领域的不断扩展和新理论的产生,人们越来越需要更先进的方法来检验大脑行为关系的假设。贝叶斯认知建模的最新进展使得神经和行为模型能够结合成一个统一的框架。然而,这些方法需要手动提取特征,并且缺乏在更复杂的数据中发现以前未知的神经特征的能力。因此,这会阻碍模型的表现力。为了应对这些挑战,我们提出了一种神经认知变分自动编码器 (NCVA),将高维脑电图与认知模型结合起来,用于生成和预测建模分析。重要的是,我们的 NCVA 既可以根据行为数据预测脑电图信号,又可以根据脑电图信号估计认知模型参数。这种新方法可以让我们更全面地了解行为、大脑活动和认知过程之间的三重关系。
