生物序列最近的邻居搜索在生物信息学中起有趣的作用。减轻二次复杂性对常规距离计算的痛苦,神经距离嵌入(将项目序列置于几何空间中)已被公认为是有希望的范式。为了维持序列之间的距离顺序,这些模型所有部署三重态损失并使用直观方法来选择三胞胎的子集,以从广阔的选择空间中进行训练。但是,我们观察到,这种训练通常使模型只能区分一小部分距离顺序,从而使其他人未被认可。此外,天真地选择了更多的三胞胎进行最新的网络下的培训,不仅增加了成本,而且还增加了模型性能。在本文中,我们介绍了Bio-KNN:KNN搜索框架 - 生物序列的工作。它包括一种系统的三重态选择方法和一个多头网络,增强了所有距离订单的识别而不增加培训费用。最初,我们提出了一种基于聚类的方法,将所有三重态分为具有相似支持的几个群集,然后使用创新策略从这些群集中选择三胞胎。同时,我们注意到同一网络中同时培训不同类型的三胞胎无法实现预期的性能,因此我们提出了一个多头网络来解决此问题。我们的网络采用卷积神经网络(CNN)来提取所有群集共享的本地效果,然后分别学习一个分别为每个群集学习多层启示(MLP)头。此外,我们将CNN视为特殊的头部,从而将以前模型中忽略的关键特征整合到我们的模型中以获得相似性识别。广泛的实验表明,我们的生物KNN在两个大规模数据集上的最先进方法显着优于而没有增加培训成本。
补偿磁铁的物理学:抗铁磁铁,磁磁补偿的铁磁铁和合成反铁磁铁非常丰富,有时是独一无二的和出乎意料的。补偿磁铁中允许的新效果类型包括:超快(THZ)动力学,伪粘合元素,(自我)补偿的天空,交错的拓扑结构以及与自旋极化三胞胎超导性的兼容性。因此,补偿磁铁的使用构成了开发新的旋转组件的范式转移,超出了传统的铁磁体的可能性。这个特殊的收藏品为读者提供了最新的材料开发项目,探讨了尖端的基本物理和有希望的补偿磁铁应用。可以将其分为七个主题组,每个组都处理该学科的当前和快速增长的分支。
近一个世纪以来出现了大量关于烯烃Z/E异构化的报道,但其中绝大多数仍然局限于二、三取代烯烃的异构化,四取代烯烃的立体特定Z/E异构化仍是一个尚未开发的领域,因此缺乏轴手性烯烃的立体发散合成。本文我们报道了通过不对称烯丙基取代异构化对四取代烯烃类似物进行对映选择性合成,然后通过三重态能量转移光催化对其进行Z/E异构化。在这方面,可以有效实现轴手性N-乙烯基喹啉酮的立体发散合成。机理研究表明,苄基自由基的生成和分布是保持轴手性化合物对映选择性的两个关键因素。
不断增长的全球能源需求与资源和空间限制相结合,需要增强结晶硅太阳能电池,这是当前的主要太阳能技术。但是,由于他们开始接近理论效率限制,他们的效率仅在最近20年中逐渐提高。主要损失的来源是热化,其中超过硅吸收的带隙的能量是热量的。有机分子中的单线激子裂变已被提出以减少这些损失。通过使有机层吸收高能光,并将从单裂裂变过程产生的三重态激子转移到硅中,该光谱区域中的光电流可以增加一倍,从而将效率从传统限制提高的29.4%提高到42%。
遗传编码的DNA记录器非侵入性地将短暂生物学事件转化为细胞基因组中持久的突变,从而可以使用高吞吐量DNA测序1重建细胞体验1。现有的DNA记录器已达到高信息记录2-15,耐用记录3,5–10,13,15-19,多个蜂窝信号的多重记录5-8,19,20以及时间分辨的信号记录记录为5-8,19,20,但在哺乳动物细胞中并非全部。我们提出了一个称为Pechyron的DNA记录器(通过有序插入的Prime编辑21个细胞历史记录记录)。在Pechyron中,哺乳动物细胞经过精心设计,以表达Prime编辑器和Prime编辑指南RNA 21(PEGRNA)的集合,可促进迭代式编辑的迭代回合。在每一轮编辑中,Prime编辑器与恒定的传播序列一起插入可变的三重态DNA序列,该序列会停用以前的序列并激活下一步的插入步骤。编辑可以无限期地继续进行,因为每个插入添加了启动下一步所需的完整序列。因为在任何给定时间只有一个主动目标位点,因此插入以单向顺序依次积累。因此,时间信息是按插入顺序保留的。通过使用只有单个DNA链的主要编辑器来实现耐用性,有效地避免了删除突变,这些突变可能会损坏存储在记录基因座中的信息。高信息含量是通过共表达各种PEGRNA(每个Pegrnas)来确定的,每个Pegrnas都具有独特的三个DNA序列。我们证明,这种PegrNA库的本构表达产生插入模式,以支持细胞谱系关系的直接重建。在替代的Pegrna表达方案中,我们还通过手动脉冲表达来实现多路复用记录,然后从Pechyron记录中重建脉冲序列。此外,我们将特定PEGRNA的表达耦合到特定的生物刺激,这允许哺乳动物细胞种群中化学暴露的暂时分析,多重记录。
铅卤化物钙钛矿纳米晶体是经典和量子光发射的有前途的材料。要了解这些出色的特性,需要对带边的激子发射进行彻底的分析,这是由于扩大效果而在整体和室温研究中无法达到的。在这里,我们报告了中间量子限制方案中单个CSPBBR 3 NC的光致发光的低温温度研究。我们揭示了观察到的光谱特征的尺寸依赖性:亮点激子能量分裂,TRION和BIEXCITON结合能以及光学声子复制频谱。此外,我们表明明亮的三重能量分离与纯交换模型一致,并且可以简单地考虑发射偶极子和发射状态的种群的方向来合理化所记录的极性特性和光谱。
摘要:中手势界面已在特定场景中流行起来,例如通过头戴式显示器与增强现实的交互、通过智能手机或游戏平台进行特定控制。本文探讨了使用位置感知的基于空中手势的命令三元组语法与智能空间进行交互。该语法的灵感来自人类语言,构建为具有命令结构的呼格。在“请打开灯!”这样的句子中,通过模仿其首字母/首字母缩略词(呼格,与句子的省略主语一致)的手势来调用被激活的对象。然后,几何或方向手势识别动作(命令式动词),可能包括对象特征或要与之联网的第二个对象(补语),也由首字母或首字母缩略词表示。从技术上讲,依赖于可训练的多设备手势识别层的解释器使对/三元组语法解码成为可能。识别层适用于可抓取设备(智能手机)和自由手持设备(智能手表和外部深度摄像头)以及特定编译器的加速度和位置输入信号。在 Living Lab 设施的特定部署中,语法已通过使用源自英语的词典(关于首字母和首字母缩略词)进行实例化。对 12 名用户的受试者内分析使我们能够分析手势语法在其三种设备实现(可抓取、可穿戴和无设备)中的语法接受度(就可用性、手势对物体动作的一致性和社会接受度而言)和技术偏好。参与者对学习语法的简单性及其在管理智能资源方面的潜在有效性表示了共识。在社交方面,参与者倾向于在户外活动中使用手表,在家庭和工作环境中使用手机,强调了社交背景在技术设计中的重要性。由于其效率和熟悉度,手机成为手势识别的首选。该系统可适应不同的传感技术,解决了可扩展性问题(因为它可以轻松扩展到新对象和新动作)并允许个性化交互。
•了解物质与电磁辐射的相互作用及其在药物分析中的应用•了解药物的色谱分离和分析。•使用各种分析工具对药物进行定量和定性分析。单位 - I 10小时1。紫外线可见光谱电子过渡,发色团,副色素,光谱移位,对吸收光谱,啤酒和兰伯特定律的溶剂效应,推导和偏差。仪器 - 辐射,波长选择器,样品细胞,检测器 - 光管,光电倍增管,光电伏电池,硅光电二极管的来源。应用 - 分光光度滴定,单个组件和多组件分析2。荧光学理论,单线,双线和三重态电子状态的概念,内部和外部转换,影响荧光,淬火,仪器和应用的因素 - II 10小时1.红外光谱
单线裂变(SF)可以生成一个交换耦合五重奏三联对状态5 tt,这可能会导致量子计算和量子传感的实现,即使在室温下,也可以使用纠缠的多个量子。然而,观察5吨的量子相干性仅限于低温温度,基本问题是哪种材料设计将使其室温量子相干性。在这里我们表明,在室温下,在发色团综合金属有机框架(MOF)中,SF衍生的5 tt的量子相干性可以超过一百纳秒。MOF中发色团的微妙运动导致5 tt生成所需的交换相互作用的足够波动,但同时也不会引起严重的5 tt腐蚀性。此外,可以通过分子运动来控制量子跳动的相位和振幅,从而开放基于多个量子栅极控制的室温分子量子计算。
分子间单线态裂变 (SF) 是将光生单线态激子转换为驻留在不同分子上的两个三线态激子。SF 有可能通过从一个高能光子中收获两个电荷载体来提高太阳能电池的转换效率,否则其剩余能量将以热量的形式损失。由于在固态下表现出分子间 SF 的分子晶体选择有限,阻碍了商用 SF 增强模块的开发。计算探索可能会加速新 SF 材料的发现。多体微扰理论框架内的 GW 近似和 Bethe-Salpeter 方程 (GW+BSE) 是当前用于计算具有周期性边界条件的分子晶体的激发态特性的最先进方法。在本次演讲中,我将讨论如何使用 GW+BSE 评估候选 SF 材料,以及将其与材料中的低成本物理或机器学习模型相结合
