投资经理使用一系列基础策略来部署资本,包括但不限于多头/空头股票、全球宏观、信贷、事件驱动和市场中性。基础策略将跨投资风格(例如,可能是基本面和量化或其他策略的组合)、市场部门、资产类别、投资主题和时间范围进行多样化,旨在减少基金对任何单一投资回报来源的依赖。
真空泵精确工程和制造服务控制软件功率半导体氘,trium或其他气体融合燃料招募专用金属,例如高级钢普通金属,例如镍,铜工程,采购和建筑公司热管理技术天然锂第一壁材料法律服务的低温设备磁铁RF加热锂(富集)高温超导超导(HTS)胶带激光器(组装)稀土金属激光元件,例如。二极管,激光玻璃
水中的trip含量的抽象建模是一种有意义的方法,可以评估气候模型中水周期的表示,因为它可以追溯水周期内和储层之间的通量(平流层,对流层和海洋)。在这项研究中,我们介绍了在大气通用循环模型(AGCM)MIROC5 -ISO中的自然trimatium及其在1979 - 2018年期间的模拟。由于最近发表的trium生产计算,我们能够首次研究与11年太阳能周期对降水中Tritium的自然产量产生的影响。miroc5 -iso正确模拟了对降水中tri的大陆,纬度和高度影响。与平流层 - 对流层交换相关的季节性trip含量峰值也可以准确地模拟时间安排,即使MiroC5 -ISO低估了变化的幅度。div> div> div> div> div> div> div> div> div> div> div> div> div> div> div>与在南极洲的沃斯托克(Vostok)的观察结果一致,例如,我们的模拟表明,内部气候变异性在极性沉淀中在tritium中起重要作用。由于其对南极涡流的影响,南环模式增强了生产成分对南极降水的trim的影响。在格陵兰岛,由于北大西洋振荡对湿度条件的影响,在降水中检测到降水中11年太阳周期的东 - 西对比。
嵌入绝缘固态基质中的稀土 (RE) 离子为量子计算和量子信息处理提供了一个有趣的平台。稀土离子的核自旋和电子晶体场 (CF) 能级可用于存储和操纵量子态。由于稀土离子量子态的相干时间较长,它们非常适合实现量子比特。最近已证明,失相时间范围从 CF 态之间的电子跃迁的 100 µ s [1] 到核跃迁的 1.3 s [2],甚至通过使用动态解耦 [3] 可长达 6 小时。此外,通过检测钇铝石榴石 (YAG) [4, 5]、钒酸钇 (YVO) [6] 和硅酸钇 (YSO) [7–9] 发射的光子,已经证明了读出单自旋态的可能性,这使得此类稀土离子系统成为量子技术的有希望的平台。一些稀土离子在电信使用的频率范围内表现出 CF 跃迁,这使得它们非常适合用作量子中继器 [10, 11]。以前利用稀土离子进行量子计算的方案提出利用 CF 态的电偶极相互作用,建议通过间接偶极阻塞效应实现 CNOT 门 [12–14]。在该方案中,来自控制量子位的偶极场会使目标量子位的跃迁频率发生偏移。这被用来实现具有脉冲序列的 CNOT 门,只有当控制位处于逻辑 1 态时,该门才有效。这里我们提出了一种基于磁偶极相互作用的更快的两量子比特门,该门的灵感来自文献 [15] 中利用硅中的磷供体实现的两量子比特门,类似于金刚石中氮空位中心的混合电子和核自旋方案 [16]。我们在图 1 中展示了基本原理,并在图 2 中展示了相关能量尺度的基础层次。
尽管有许多尝试,但很难获得有关染色体大分子组织及其重复模式的信息。一个攻击点,长期以来一直被认可,但直到最近才无法实现,是对染色体某些组成部分的选择标记,其分布可以在随后的细胞分裂中看到。Reichard和Estborn'表明N15标记的胸苷是脱氧核糖核酸(DNA)的前体,并且没有转移到核糖核酸的合成中。最近Friedkin等人2以及降落和Schweigerl使用C'4标记的胸苷来研究DNA合成。在雏鸡胚胎和乳酸杆菌中,示踪剂没有明显的转移向核糖核酸。鉴于这些发现,胸苷似乎是实验所需的中间体,但是到目前为止使用的标签对于通过自显影手段的显微镜可视化并不令人满意。为了确定细胞中几个单个染色体是否是放射性的,必须获得具有分辨率为染色体尺寸的放射自显影仪。在此级别上的分辨率很难使用大多数同位素获得,因为它们的β颗粒的范围相对较大。理论上的tritium应该提供可获得的最高分辨率,因为β颗粒的最大能量仅为18 keV,对应于照相乳液中的微米范围。因此,应该可以在小(如单个染色体)的颗粒中识别该标签。考虑到这一点;制备trit胸腺标记的胸苷,并用于标记染色体,并通过使用照相emulsions遵循其在以后分裂中的分布。材料和方法。通过从乙酸的羧基催化trib催化tritium到胸苷的嘧啶环中的碳原子(该方法的详细信息),制备了高特异性活性(3 x 101 mc/mm)的trium标记的胸苷(3 x 101 mc/mm)。Vicia Faba(英国宽豆)的幼苗在含有2-3罐/ml放射性胸苷的矿物营养溶液中生长。选择该植物是因为它具有121arge染色体,其中一对在形态上是不同的,并且由于分裂周期的长度和循环中DNA合成时间的长度是在同位素溶液中生长后的4年后,以适当的时间在适当的时间内用水洗涤,并将其彻底洗涤为col col,并转移了col(col),并转移了col(col),并转移了一个saquine(col)。水罐/ml)以进一步增长。以适当的间隔固定在乙醇 - 乙酸中(3:1),在1 N HC1中水解5分钟,用Feulgen反应染色,并在显微镜载玻片上挤压。剥离膜,并如前所述制备放射自显影。5
在国家点火设施的实验中,由HDC-ablator非均匀性播种的三维不对称的证据D. T. Casey,1 B. J. Macgowan,1 J. D. Sater,1 A.B. Zylstra,1 O. L. Landen,1 J. Milovich,1 O.A. Hurricane, 1 A. L. Kritcher, 1 M. Hohenberger, 1 K. Baker, 1 S. Le Pape, 1 T. D ö ppner, 1 C. Weber, 1 H. Huang, 2 C. Kong, 2 J. Biener, 1 C. V. Young, 1 S. Haan, 1 R. C. Nora, 1 S. Ross, 1 H. Robey, 1 M. Stadermann, 1 A. Nikroo, 1 D. A. Callahan, 1 R. M. Bionta,1 K. D. Hahn,1 A. S. Moore,1 D. Schlossberg,1 M. Bruhn,1 K. Sequoia,2 M. Rice,2 M. Farrell,2 M. Farrell,2 C. Wild 3 1)Lawrence Livermore国家实验室,美国2)美国2)一般性原子4)停滞时爆炸壳和高面积密度(ߩܴൌ ߩܴൌ)。ρr中的不对称降解壳动能与热点的偶联并减少了该能量的限制。我们提出了第一个证据,即高密度碳实验中的玻璃壳壳厚度(约0.5%)在国家点火设施(NIF)处观察到的3Dρρr不对称的重要原因。这些壳厚度不均匀性显着影响了一些最新的实验,导致ρr不对称的平均ρr和热点速度约为100 km/s的阶段。这项工作揭示了点火实验中重大内爆性降解的起源,并在胶囊厚度计量和对称性上提出了严格的新要求。在国家点火设施(NIF)[1]进行的惯性限制融合(ICF)实验中,氘和trium(dt)燃料的胶囊被浸泡在高密度和温度下,以引发α-颗粒粒子自热和融合燃烧[2,3]。间接驱动ICF概念使用激光来照射高Z圆柱形hohlraum,该圆柱体试图产生几乎均匀的准热,X射线驱动器。X射线驱动器,然后消除胶囊的外层,压缩剩余的烧蚀剂和径向径向向内的低温冷冻DT的内层。此爆炸壳会收敛并压缩气态DT区域形成热点。要达到点火,DT热点必须具有足够高的能量密度,以便足够的时间激发热点自热,并通过密集的DT壳开始燃烧波。该要求可以等效地表示为ܲ߬的条件;其中ܲ是热点压力,能量密度的度量是该能量的限制时间[4,5]。要产生高ܲ߬,内爆必须具有较高的移位内爆速度(ݒݒ),交通壳和热点之间的足够耦合,并且在停滞时高度(或ρr定义为ρr)。壳动能的耦合和该能量的限制都被三维(3D)ρr不对称性降解。使用简化的两活塞系统的最新分析显示[6]在弱α加热的极限中:ఛ