●英国学习者在地区范围内是唯一一个不展示年度英语艺术和数学评估学生表现和进步评估(CAASPP)年度绩效的群体(CAASPP)。●量度最低的环境(LRE),在上学日的80%或以上的通识教育环境中的残疾学生百分比比上几年保持略有改善。需要更大的增加,尤其是在次要级别上,以增加包容性并满足州所需的LRE目标。●CVUSD的整体大学/职业指标对所有学生来说都是“高”,但对于英语学习者,无家可归者和残疾学生来说,这是“非常低”的
最近已经证明了Terahertz(THz)发射量子级联激光(QCL)梳子的全相控制,即使是最苛刻的应用,也为新的视角开辟了新的观点。在此框架中,简化控制这些设备的设置将有助于加速其在许多领域的传播。这项研究报告了一种使用非常简单的实验设置来控制THZ QCL梳子的发射频率的新方法,从而利用了普通的白色光发射二极管的不相干发射。在这些条件下可访问的略有扰动式允许调整半导体的复杂折射率,而不会破坏宽带激光增益。软执行器的表征并与另一个执行器(QCL驱动电流)进行了比较。显示了这种额外的自由度对于频率和thz QCL梳子的相位稳定的适用性,并讨论了观点。
英国官方承认不列颠战役于 7 月 10 日爆发 [见本期刊其他部分转载的道丁电报 - 第 11-13 段],当时英吉利海峡上空爆发了大规模空战。德国人将第一阶段确定为一场单独的战役,他们称之为 Kanalkampf,即海峡战役,该战役在接下来的一个月内展开,德国空军对沿海护航队和港口发动了袭击。德国人认为,他们只是在 8 月中旬对机场和雷达站发动了攻击,才开始了他们的主要进攻,即不列颠战役本身,进攻始于泰晤士河口的一些初步交锋和对机场和雷达的一些小规模攻击,最终形成了代号为 Adler Tag [鹰日] 的全面进攻,原定于 8 月 13 日发动。那天早上的阿德勒行动被证明是一场惨败,德国 C2 系统在早期就失去了对行动的控制,并在其内部造成了混乱和混乱。最后,一些已经升空的部队试图以天气原因取消行动,结果许多部队(尤其是战斗机护航部队)中止了行动,而其他部队(主要是轰炸机编队)则没有中止行动。因此,早上的行动半途而废。下午,在一次协调更好的行动中,大型编队袭击了机场和港口。尽管处理得不太好,但最初的阿德勒行动 [鹰击] 标志着一段激烈战斗的开始,在此期间,德国空军猛烈轰炸了英国皇家空军的机场和雷达,战斗机司令部也同样凶猛地进行了防御。
在计算机图形学中创建高质量的材质是一项具有挑战性且耗时的任务,需要很高的专业知识。为了简化这个过程,我们引入了 MatFuse,这是一种统一的方法,它利用扩散模型的生成能力来创建和编辑 3D 材质。我们的方法整合了多种条件来源,包括调色板、草图、文本和图片,增强了创造可能性并对材质合成进行了细粒度的控制。此外,MatFuse 通过多编码器压缩模型的潜在操作实现了地图级材质编辑功能,该模型可以学习每个地图的解开的潜在表示。我们在多种条件设置下展示了 MatFuse 的有效性,并探索了材质编辑的潜力。最后,我们根据 CLIP-IQA 和 FID 分数定量评估生成材质的质量,并通过开展用户研究定性评估生成材质的质量。用于训练 MatFuse 的源代码和补充材料可在 https://gvecchio.com/matfuse 上公开获取。
摘要 - 金属制造过程的未来,例如激光切割,焊接和添加剂制造,应依赖于行业4.0支头的智能系统。这样的数字创新确实正在推动机械制造商进行深刻的转变。是根据针对特定过程设计和优化的定制机器,雄心勃勃是利用开放性和大量的工业机器人可用性,以提高多流程实现的灵活性和可重新配置。挑战在于,机械构建者将自己转变为高知名度专业的过程驱动的机器人集成器,能够用智能传感和认知方面的过程控制器杠杆优化机器人运动。这项工作描述了BLM集团和Politecnico di Milano的多年合作,在CNR的支持下,重点是部署完整的机器人工作站,其特征是机器人控制和运动计划与制造过程的完整整合。索引术语 - 指导的能量沉积,激光金属拆卸,添加剂制造的设计,CAD/CAM
第1部分理解和破坏害虫•1。对蓟马和其他小型飞行昆虫的视力和嗅觉的理解,以增强生物控制:新西兰的植物和食品研究; •2。昆虫的基因工程以抑制虫害繁殖:美国北卡罗来纳州立大学的麦克斯·斯科特(Max Scott); •3。开发基于植物的昆虫生物防治剂:Azucena Gonzalez-Coloma,CSIC,西班牙; •4。基于神经肽的生物防治剂的开发用于管理害虫:英国格拉斯哥大学Shireen Davies; •5。使用基因沉默(RNA干扰)技术产生安全的杀虫化合物:意大利Enea的Salvatore Arpaia; •6。理解反对害虫攻击的植物防御:美国路易斯安那州立大学的迈克尔·斯托特;第2部分改善了生物防治产品开发和使用•7。制定生物防治剂以进行植物保护的钥匙问题:琳达·马斯卡特(Linda Muskat),应用科学大学 - 德国比勒菲尔德(Bielefeld); •8,促进新的生物防治产品来控制害虫:新西兰林肯大学Travis Glare; •9,用于害虫控制的生物防治剂的应用技术开发:奥地利奥地利理工学院的Claudia Preininger; •10。对害虫的生物防治剂进行改进:美国环境保护局的香农·博尔赫斯,生物农药和污染预防司;
• 生成随机 MAC 地址的程序不标准化,导致终端之间的行为不同。 • 终端连接到给定 AP 后,即使 MAC 地址是随机生成的,其在整个连接过程中也保持不变,因此允许将设备在整个连接过程中执行的操作关联起来,例如,将其绝对位置和相对位置与其他终端的位置关联起来。 • 据估计,目前有 5% 到 10% 的设备不使用随机 MAC 地址。 • 在许多情况下,即使移动设备使用不断变化的随机 MAC 地址,也有许多技术能够唯一地识别它们。这些是当前在 Wi-Fi 跟踪中使用的技术,基于探测请求帧中包含的(或从中推断出的)各种信息以及
本文旨在提出一种配备储能装置的电网形成转换器与水力发电机之间的协调控制策略,以促进未来电力系统中转换器的频率支持。这样,就可以利用转换器系统的快速动态特性,同时最大限度地减少与转换器系统相关的储能要求。电网形成转换器频率控制器的拟议调整标准有助于转换器系统与水力发电机之间的自然协调。将所提出的控制策略的有效性与文献中现有的传统下垂方法进行了比较。最后,使用 PSCAD 中的详细时域仿真模型验证了分析结果。
[ 直流控制器是一种微电子混合设备。采用了 MIL-HDBK-217B 通知 2《电子设备可靠性预测》第 2.1.7 节中的混合故障率预测模型和程序。这种预测方法需要识别单个电子零件和基板,以及每个零件的单独电应力数据。热应力是由混合封装温度和零件功率耗散引起的。