超过40%的人类基因组由逆转录座子组成,DNA物种具有通过RNA中间体复制并与逆转录病毒相关的潜力。逆转录座子的研究能力最多,这可能会导致DNA损伤和新颖的插入突变。逆转录盆地编码的产物,包括病毒样蛋白,双链RNA和外肌体圆形圆形DNA,也可以是先天免疫系统的有效激活剂。越来越多的证据表明,逆转录座子在与年龄相关的神经退行性疾病中被激活,并且这种激活有因果关系有助于神经毒性。在这里,我们提供了逆转座子生物学的概述和概述与年龄相关的神经退行性疾病中逆转录跨座子激活的证据,重点是涉及TAR-DNA结合蛋白-43(TDP-43)和TAU的概述。迄今为止的研究为临床试验提供了基础,并对创新策略保持了希望,以减轻逆转录跨跨性别失调在神经退行性疾病中的不利影响。
上市时间是决定集成电路设计开发成本的关键因素。自动化部分设计过程的工具可以节省开发时间,因为本质上是跳过了这些部分。在本项目中,基于现有存储器设计,使用 Cadence SKILL 语言为此目的开发了一个只读存储器生成器。此设计是一个具有 12 位输入地址的 1.8 V 异步存储器。位线的数量直接对应于输出数据总线的宽度。生成器功能包括存储器原理图和布局生成、存储器重新编程、自动解码和布局后访问时间模拟,以及生成用于 Verilog 中解码模拟的功能模型。可以使用直接集成到 Cadence Virtuoso 菜单中图形用户界面单独运行这些功能。在正常条件下,创建的内存范围从 128 B 到 65.536 kB,访问时间从 4.2 ns 到 6.9 ns。角运行显示最多比原始值增加 78%。此外,生成的内存布局面积从 21397 µm2 到 829776 µm2。最大内存生成时间为 1 小时 31 分钟。
1 玛希隆大学药学院药理学系,447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, 泰国, 2 缅甸仰光药学院药理学系,3 玛希隆大学科学学院药理学系,272 Rama VI Road, Rajathevi, Bangkok 10400, 泰国, 4 玛希隆大学药学院药学系,447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, 泰国, 5 诗纳卡琳威洛大学医学院生物化学系,114 Sukhumvit 23 Road, Bangkok 10110, 泰国, 6 泰国微电子中心微电子研究与开发部,Chachoengsao 24000, 泰国, 7 玛希隆大学医学技术学院研究与创新中心,曼谷10700,泰国,8 朱拉蓬研究生院环境毒理学,曼谷,泰国,9 高等教育办公室环境健康与毒理学卓越中心,曼谷,泰国
实现细胞内无载体货物输送的一种方法是通过施加强脉冲电场使细胞膜瞬时通透。施加电场时,立即产生的效应是在细胞膜上感应出跨膜电压(见词汇表)[1]。如果跨膜电压足够强,细胞膜就会暂时通透,从而允许外源货物进入细胞(图 1 A)。在文献中,术语“电穿孔”和“电通透”经常互换使用,以描述这一物理输送过程。在此过程中感应出的跨膜电压强度可导致细胞不可逆或可逆通透。当旨在输送可诱导细胞功能变化的分子(例如瞬时基因表达或基因组编辑)时,可逆细胞通透是首选。在整个评论中,我们使用术语电转移来描述通过应用电脉冲跨细胞膜(细胞外到细胞内,或反之亦然)的分子转移。
为了解决感觉丧失和随之而来的平衡问题,已经积极研究了多种运动增强方法,包括外骨骼辅助或功能电刺激(FES)(FES)(Kim等,2012; Chen等,2013)。但是,外骨骼和FES方法都直接适用于运动输出并绕过中枢神经系统(CNS)(Dollahon等,2020)。中枢神经系统的最小参与可能会严重限制增强平衡所需的神经重组。在另一种方法中,可以通过视听增强来间接解决感觉丧失。尽管已经证明了它们的平衡功效,但在治疗结束后它们对保留的影响仍然存在一个问题(Huang等,2006; Roemmich等,2016)。这也许是因为处理视听反馈的内在重大认知参与,这可能会引发一致性问题,这对于促进保留至关重要(Andersson等,2002; Sigrist等,2013)。此外,视听反馈是通信的主要感官方式,因此在交流过程中可以通过分散注意力很容易降低其功效。
图表对于传达各个领域的信息至关重要,但对于没有辅助技术的盲目和低视力(BLV)人来说是无法访问的。图表理解工具利用触觉反馈已被广泛使用,但通常是笨重,昂贵且静态的,使它们无法传达图表数据。为了增加设备的可移植性,启用多任务处理并为图表理解提供了效率的帮助,我们引入了一个新型系统,该系统将不引人注目的调制电动action反馈直接传达给指尖边缘。我们与十二名参与者的三部分研究证实了该系统的有效性,证明当用0.12秒的间隔应用0.5秒时,Electrotactile反馈提供了最准确的位置和方向识别。此外,我们的电动设备已被证明在协助BLV参与者理解四个常用图表方面非常有价值:线图,散点图,条形图,
摘要:将高度多孔石墨烯(GO)气凝胶整体加热到超高温度的闪光灯加热被用作低碳足迹技术,以设计功能性气凝胶材料。首次证明了Airgel Joule加热至3000 K,并具有快速加热动力学(〜300 K·min-1),从而实现了快速和节能的闪光加热处理。在一系列材料制造的挑战中利用了超高温度闪光灯焦耳加热的广泛适用性。超高温度焦耳加热用于快速在快速时间尺度(30-300 s)的水热气凝凝胶快速地石墨退火,并大大降低了能量成本。闪光气凝胶加热至超高温度,用于原位合成超铁纳米颗粒(PT,CU和MOO 2)的原位合成,并嵌入了混合气瓶结构中。冲击波加热方法可以使形成的纳米颗粒的高渗透量均匀性,而纳米颗粒的大小可以通过控制1到10 s之间的焦耳加热持续时间来轻松调节。因此,此处介绍的超高温度加热方法对基于石墨烯的气凝胶的多种应用具有重要意义,包括3D热电材料,极端温度传感器和流动中的气瓶催化剂(电)化学。■简介
人脑大小和复杂性扩张的基础遗传机制仍然很少理解。长期散布的核元件 - 1(L1)逆转座子是人种类似基因组中遗传性不同的来源,但是它们在生理功能中的重要性及其对人脑进化的贡献在很大程度上是未知的。使用多媒体分析,我们在这里证明了L1促进器在发育中和成年人的大脑中动态活跃。l1s产生数百种开发调节和细胞类型 - 特定的转录本,其中许多被选为嵌合转录本或调节RNA。一个L1衍生的长不编码RNA Linc01876是一个人类特异性转录本,在大脑发育过程中仅表示。CRISPR干扰Linc01876导致脑诊断的大小和神经祖细胞的过早差异降低,这意味着L1在人类特异性的发育过程中。总而言之,我们的结果表明,L1衍生的转录本提供了先前未描述的灵长类动物和人类特异性转录组复杂性,这有助于人脑的功能多样化。
水凝胶的独特性质使得设计栩栩如生的软智能系统成为可能。然而,刺激响应型水凝胶仍然受到驱动控制有限的困扰。直接电子控制电子导电水凝胶可以解决这一难题,并允许与现代电子系统直接集成。本发明展示了一种具有高平面电导率的电化学控制纳米线复合水凝胶,可刺激单轴电化学渗透膨胀。该材料系统允许在仅 -1 V 的电压下精确控制形状变形,其中水凝胶本体的电容充电导致高达 300% 的单轴膨胀,这是由于每个电子离子对约 700 个水分子的进入引起的。该材料在关闭时会保持其状态,这对于电调谐膜来说是理想的选择,因为膨胀和中孔率之间的固有耦合使得能够通过电子控制渗透性以实现自适应分离、分馏和分布。用作电化学渗透水凝胶致动器,它们可实现高达 0.7 MPa 的电活性压力(1.4 MPa vs 干燥)和 ≈ 150 kJ m − 3 的工作密度
使用可再生能源作为解决对化石燃料的能源依赖的解决方案需要创新的能源储存解决方案。在文献中提出的解决方案中,电热储能由使用跨临界 CO 2 循环的热泵和热机组成,水作为热能储存 (TES) 流体来储存显热,冰作为冷储存介质来储存潜热,这似乎很有前景。在本文中,使用 Aspen Plus V11 开发了该系统的稳态数学模型,并进行了验证并与文献中的结果进行了比较。然后利用参数敏感性分析研究了验证模型的性能,通过探索不同参数对多个效率指标的影响,最佳情况下实现了往返效率 (η RT ) 7.64 % 的改善。发现水轮机入口温度和热机最小压力对 η RT 改善的贡献最大,最小压力是可以通过使用具有较低冰点的冷 TES 介质进一步降低的压力。最后,评估了替代冷 TES 介质(冻结温度低于冰)对系统性能的影响。结论是,模型的 η RT 随着冻结温度的下降而下降,从 0 °C 时的 46.90 % 下降到 -20.19 °C 时的 44.90 %。因此,选择冻结温度低于冰的冷 TES 介质不会带来与模型的 η RT 相关的好处。
